Vertnin (VRTN) variants are associated with thoracic vertebral number (TVN) in pigs. However, the biological function of VRTN remains poorly understood. Here we first conducted a range of experiments to demonstrate that VRTN is a responsible gene for TVN and two causative variants in the regulatory region of VRTN additively regulate TVN. Then, we show that VRTN is a novel DNA-binding transcription factor as it localizes exclusively in the nucleus, binds to DNA on a genome-wide scale and regulates the transcription of a set of genes that harbor VRTN binding motifs. Next, we illustrate that VRTN is essential for the development of thoracic vertebrae. Vrtn-null embryos display somitogenesis defect with the failure of axial rotation and fewer somites at the thoracic somite stage. Half of Vrtn heterozygous mice show abnormal spinal development with fewer thoracic vertebrae and ribs than their wild-type littermates. Lastly, we reveal that VRTN could modulate somite segmentation via the Notch signaling pathway. The findings advance our understanding of the mechanisms underlying the development of thoracic vertebrate in mammals, and VRTN causative variants provide a robust tool to improve pork production by selecting the alleles increasing the number of thoracic vertebrae and ribs.
Evolutionary Applications. 2020;13:458-475. wileyonlinelibrary.com/journal/eva | INTRODUC TI ONThe domestication of farm animals is a groundbreaking event that has deeply influenced human history. The pig (Sus scrofa) was domesticated largely in China and the Near East approximately 10,000 years ago (Frantz et al., 2015;Larson et al., 2005). Since then, human-mediated artificial selection and natural selection have resulted in diverse pig breeds in the world. Chinese domestic pigs represent a rich genetic resource. More than one-third (~100) of global pig breeds are found in China (Wang et al., 2011). These diverse breeds are Abstract Genome-wide SNP profiling has yielded insights into the genetic structure of China indigenous pigs, but has focused on a limited number of populations. Here, we present an analysis of population structure and signals of positive selection in 42 Chinese pig populations that represent the most extensive pig phenotypic diversity in China, using genotype data of 1.1 million SNPs on customized Beadchips. This unravels the fine-scale genetic diversity, phylogenic relationships, and population structure of these populations, which shows remarkably concordance between genetic clusters and geography with few exceptions. We also reveal the genetic contribution to North Chinese pigs from European modern pigs. Furthermore, we identify possible targets of selection in the Tibetan pig, including the well-characterized hypoxia gene (EPAS1) and several previously unrecognized candidates. Intriguingly, the selected haplotype in the EPAS1 gene is associated with higher hemoglobin contents in Tibetan pigs, which is different from the protective role of EPAS1 in the high-altitude adaptation in Tibetan dogs and their owners. Additionally, we present evidence for the causality between EDNRB variants and the two-end-black (TEB) coat color phenotype in all Chinese pig populations except the Jinhua pig. We hypothesize that distinct targets have been independently selected for the formation of the TEB phenotype in Chinese pigs of different geographic origins. This highlights the importance of characterizing population-specific genetic determinants for heritable phenotype in diverse pig populations. K E Y W O R D S Chinese pig, coat color, genetic diversity, high-altitude adaptation, phylogenetic relationship, population structure | 459 HUANG et Al. renowned for desirable traits related to reproduction, disease resistance, docility, and meat quality, providing valuable germplasm that supports the sustainable development of the pig industry not only in China but also in Western countries (Wang et al., 2011). For instance, S U PP O RTI N G I N FO R M ATI O N Additional supporting information may be found online in the Supporting Information section. How to cite this article: Huang M, Yang B, Chen H, et al. The fine-scale genetic structure and selection signals of Chinese indigenous pigs. Evol Appl. 2020;13:458-475. https ://doi.
Background Pigs were domesticated independently from European and Asian wild boars nearly 10,000 years ago. Chinese indigenous pigs have been historically introduced to improve Europe local pigs. However, the geographic origin and biological functions of introgressed Chinese genes in modern European pig breeds remain largely unknown. Results Here we explored whole-genome sequencing data from 266 Eurasian wild boars and domestic pigs to produce a fine-scale map of introgression between French Large White (FLW) and Chinese pigs. We show that FLW pigs had historical admixture with both Southern Chinese (SCN) and Eastern Chinese (ECN) pigs ∼200–300 years ago. Moreover, a set of SCN haplotypes was shown to be beneficial for improving disease resistance and ECN haplotypes are favorable for improved reproductive performance in FLW pigs. In addition, we confirm human-mediated introgression events at the AHR locus, at which the haplotype of most likely ECN origin contributes to increased fertility of FLW pigs. Conclusions This study advances our understanding of the breeding history of global domestic pigs and highlights the importance of artificial introgression in the formation of phenotypic characteristics in domestic animals.
The Duroc × (Landrace × Large White) hybrid pig (DLY) is the most popular commercial pig used in the Chinese pig industry. DLY pigs are usually white but sometimes show colored phenotypes. Colored DLY pigs are not favored by slaughterhouses and retailers, thus causing certain economic losses to farmers in China. In this study, we first conducted a genome-wide association study and RNA sequencing to demonstrate that KIT variants are responsible for diversifying coat color phenotypes segregating in a DLY population. We then defined the precise sizes and locations of four duplications (DUP1-4), four candidate causative mutations at the KIT locus, in the pig reference genome using the whole-genome sequence data of representative colored individuals. The sequence data also enabled us to identify a list of new KIT alleles. By investigating the association between these new alleles and coat color phenotypes, we provide further evidence that DUP2 is another causative mutation for the solid white coat color in pigs. DUP1 (the KIT gene duplication), DUP2 and the splice mutation are all required for the manifestation of a solid white coat color. DUP4 had a more significant effect on the formation of the belt phenotype compared with DUP3. Given the necessity of DUP2 for the solid white coat color, we detected IN/IN homozygotes lacking DUP2 in Large White and Landrace pigs and found that French Landrace pigs had the highest frequency (8.98%) of IN/IN individuals. This study not only advances our understanding of the molecular mechanism of the color phenotype in pigs, but also establishes a simple and accurate method for the screening of KIT IN/IN homozygotes in Large White and Landrace that would cause colored DLY pigs.
Peroxisome proliferator-activated receptor beta/delta (PPARD) is an important determinant of multiple biological processes. Our previous studies identified a missense mutation in the PPARD gene that significantly reduces its transcription activity, and consequently causes enlarged external ears in pigs. However, the mechanisms underlying the causality has remained largely unknown. Here, we show that PPARD retards the development of auricular cartilage by accelerating the apoptosis of cartilage stem/progenitor cells (CSPCs), the terminal differentiation of cartilage cells and the degradation of cartilage extracellular matrix in the auricle. At the transcription level, PPARD upregulates a set of genes that are associated with CSPCs apoptosis and chondrogenic differentiation, chondroblast differentiation and extracellular matrix degradation. ChIP-seq identified direct target genes of PPARD, including a well-documented gene for cartilage development: PPARG. We further show that compared to wild-type PPARD, the G32E mutant up-regulates the expression of PPARG and subsequently leads to the downregulation of critical genes that inhibit cartilage growth. These findings allow us to conclude that PPARD is an inhibitor of auricular cartilage growth in pigs. The causative mutation (G32E) in the PPARD gene attenuates the PPARD-mediated retardation of cartilage growth in the auricle, contributing to enlarged ears in pigs. The findings advance our understanding of the mechanisms underlying auricular development in mammals, and shed insight into the studies of innate pinna disorders and cartilage regeneration medicine in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.