Pseudomonas aeruginosa is a major opportunistic pathogen in immune-compromised individuals. Mechanisms governing immune responses to P. aeruginosa infection remain incompletely defined. Herein, we demonstrate that protein tyrosine phosphatase-1B (PTP1B) is a critical negative regulator in P. aeruginosa infection. PTP1B-deficient mice display greatly enhanced bacterial clearance and reduced disease scores, which are accompanied by increased neutrophil infiltration and cytokine production. Interestingly, PTP1B deficiency mainly up-regulates the production of interferon-stimulated response elements-regulated cytokines and chemokines, including chemokine ligand 5 (regulated on activation normal T cell expressed and secreted), CXCL10 (interferon γ-inducible protein 10), and interferon-β production. Further studies reveal that PTP1B deficiency leads to increased interferon regulatory factor 7 (IRF7) expression and activation. These findings demonstrate a novel regulatory mechanism of the immune response to P. aeruginosa infection through PTP1B-IRF7 interaction. This novel PTP1B-IRF7-interferon-stimulated response elements pathway may have broader implications in Toll-like receptor-mediated innate immunity.
Platelets have been implicated in pulmonary inflammation following exposure to bacterial stimuli. The mechanisms involved in the platelet-mediated host response to respiratory bacterial infection remain incompletely understood. In this study, we demonstrate that platelet-derived chemokine (C-X-C motif) ligand 4 (CXCL4) plays critical roles in a mouse model of acute bacterial pneumonia using Pseudomonas aeruginosa. Platelets are activated during P. aeruginosa infection, and mice depleted of platelets display markedly increased mortality and impaired bacterial clearance. CXCL4 deficiency impairs bacterial clearance and lung epithelial permeability, which correlate with decreased neutrophil recruitment to BALF. Interestingly, CXCL4 deficiency selectively regulates chemokine production, suggesting that CXCL4 has an impact on other chemokine expression. In addition, CXCL4 deficiency reduces platelet-neutrophil interactions in blood following P. aeruginosa infection. Further studies revealed that platelet-derived CXCL4 contributes to the P. aeruginosa-killing of neutrophils. Altogether, these findings demonstrate that CXCL4 is a vital chemokine that plays critical roles in bacterial clearance during P. aeruginosa infection through recruiting neutrophils to the lungs and intracellular bacterial killing.
Neutrophils play a critical role in host defense against Pseudomonas aeruginosa infection. Mechanisms underlying the negative regulation of neutrophil function in bacterial clearance remain incompletely defined. Here, we demonstrate that protein tyrosine phosphatase-1B (PTP1B) is a negative regulator of P. aeruginosa clearance by neutrophils. PTP1B-deficient neutrophils display greatly enhanced bacterial phagocytosis and killing, which are accompanied by increased Toll-like receptor 4 (TLR4) signaling activation and nitric oxide (NO) production following P. aeruginosa infection. Interestingly, PTP1B deficiency mainly upregulates the production of IL-6 and IFN-β, leads to enhanced TLR4-dependent STAT1 activation and iNOS expression by neutrophils following P. aeruginosa infection. Further studies reveal that PTP1B and STAT1 are physically associated. These findings demonstrate a negative regulatory mechanism in neutrophil underlying the elimination of P. aeruginosa infection though a PTP1B-STAT1 interaction.
To explore the possibility and condition of differentiation of bone marrow mesenchymal cells (BMSCs) to neural cells in vitro, BMSCs from whole bone marrow of rats were cultured. The BMSCs of passage 3 were identified with immunocytochemical staining of CD44 (+), CD71 (+) and CD45 (-). There were type I and type II cells in BMSCs. Type I BMSCs were spindle-shaped and strong positive in immunocytochemical staining of CD44 and CD71, whereas flat and big type II BMSCs were lightly stained. The BMSCs of same passage were induced to differentiate into neural cells by beta-mercaptoethanol (BME). After induction by BME, the type I BMSCs withdrew to form neuron-like round soma and axon-like and dendrite-like processes, and were stained positively for neurofilament (NF). The type II BMSCs did not change in the BME medium and were negatively or slightly stained of NF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.