Background: Recent years have witnessed the advancement of deep learning vision technologies and applications in the medical industry. Intelligent devices for specific medication management could alleviate workload of medical staff by providing assistance services to identify drug specifications and locations.Methods: In this work, object detectors based on the you only look once (YOLO) algorithm are tailored for toxic and narcotic medication detection tasks in which there are always numerous of arbitrarily oriented small bottles. Specifically, we propose a flexible annotation process that defines a rotated bounding box with a degree ranging from 0° to 90° without worry about the long-short edges. Moreover, a mask-mapping-based non-maximum suppression method has been leveraged to accelerate the post-processing speed and achieve a feasible and efficient medication detector that identifies arbitrarily oriented bounding boxes.Results: Extensive experiments have demonstrated that rotated YOLO detectors are highly suitable for identifying densely arranged drugs. Six thousand synthetic data and 523 hospital collected images have been taken for training of the network. The mean average precision of the proposed network reaches 0.811 with an inference time of less than 300 ms. Conclusions:This study provides an accurate and fast drug detection solution for the management of special medications. The proposed rotated YOLO detector outperforms its YOLO counterpart in terms of precision.
Recent years have witnessed the advancement of deep learning vision technologies and applications in the medical industry. Intelligent devices for special medication management are in great need of, which requires more precise detection algorithms to identify the specifications and locations.In this work, YOLO (You only look once) based object detectors are tailored for toxic and narcotic medications detection tasks. Specifically, a more flexible annotation with rotated degree ranging from 0 • to 90 • and a mask-mapping-based non-maximum suppression method are proposed to achieve a feasible and efficient medication detector aiming at arbitrarily oriented bounding boxes. Extensive experiments demonstrate that the rotated YOLO detectors are more suitable for identifying densely arranged drugs. The best shot mean average precision of the proposed network reaches 0.811 while the inference time is less than 300ms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.