Kinematic motion planning using geometric mechanics tends to prescribe a trajectory in a parameterization of a shape space and determine its displacement in a position space. Often this trajectory is called a gait. Previous works assumed that the shape space is Euclidean when often it is not, either because the robotic joints can spin around forever (i.e., has an S 1 configuration space component, or its parameterization has an S 1 dimension). Consider a shape space that is a torus; gaits that "wrap" around the full range of a shape variable and return to its starting configuration are valid gaits in the shape space yet appear as line segments in the parameterization. Since such a gait does not form a closed loop in the parameterization, existing geometric mechanics methods cannot properly consider them. By explicitly analyzing the topology of the underlying shape space, we derive geometric tools to consider systems with toroidal and cylindrical shape spaces.
Conventional multi-agent path planners typically compute an ensemble of paths while optimizing a single objective, such as path length. However, many applications may require multiple objectives, say fuel consumption and completion time, to be simultaneously optimized during planning and these criteria may not be readily compared and sometimes lie in competition with each other. Naively applying existing multi-objective search algorithms to multi-agent path finding may prove to be inefficient as the size of the space of possible solutions, i.e., the Pareto-optimal set, can grow exponentially with the number of agents (the dimension of the search space). This article presents an approach named Multi-objective Conflict-based Search (MO-CBS) that bypasses this so-called curse of dimensionality by leveraging prior Conflict-based Search (CBS), a well-known algorithm for singleobjective multi-agent path finding, and principles of dominance from multi-objective optimization literature. We prove that MO-CBS is able to compute the entire Pareto-optimal set. Our results show that MO-CBS can solve problem instances with hundreds of Pareto-optimal solutions which the standard multiobjective A* algorithms could not find within a bounded time.
This work addresses a Multi-Objective Shortest Path Problem (MO-SPP) on a graph where the goal is to find a set of Pareto-optimal solutions from a start node to a destination in the graph. A family of approaches based on MOA* have been developed to solve MO-SPP in the literature. Typically, these approaches maintain a "frontier" set at each node during the search process to keep track of the non-dominated, partial paths to reach that node. This search process becomes computationally expensive when the number of objectives increases as the number of Pareto-optimal solutions becomes large. In this work, we introduce a new method to efficiently maintain these frontiers for multiple objectives by incrementally constructing balanced binary search trees within the MOA* search framework. We first show that our approach correctly finds the Pareto-optimal front, and then provide extensive simulation results for problems with three, four and five objectives to show that our method runs faster than existing techniques by up to an order of magnitude.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.