Point absorber wave energy converter is one of the most effective wave energy harness devices. Most of the wave energy converters generate energy by oscillating the floating body. Usually, the power-take-off system is simplified as a linear spring and a linear damper. However, the narrow frequency bandwidth around a particular resonant frequency is not suitable for real vibrations applications. Thus, a nonlinear hardening spring and a linear damper are applied in the power-take-off system. The bandwidth of hardening mechanism is discussed. The dynamic model of wave energy converter is built in regular waves with time domain method. The results show that the nonlinear wave energy converter has higher conversion efficiency than the linear wave energy converter more than the natural frequency state. The conversion efficiency of the nonlinear wave energy converter in the low frequency state is closed to the linear converter. The amplitude of the incident wave, the damping of the nonlinear wave energy converter and the nonlinear parameter [Formula: see text] affect the energy capture performance of the wave energy converter.
To improve the safety and reliability of offshore structures subject to wave loading, the active vibration control problem is always one of significant issues in the field of ocean engineering. This paper deals with the near–optimal control problem of offshore structures with a nonlinear energy sink (NES) mechanism. By taking the dominant vibration mode of the offshore structure with the NES into account, a nonlinear dynamic model of the steel–jacket structure subject to wave loading is presented first. Then, using the parameter perturbation approach to solve a nonlinear two–point boundary value problem, an NES–based optimal controller with the form of infinite series sum is presented to suppress the vibration of the offshore structure. Third, an iteration algorithm is provided to obtain the near–optimal controller. Simulation results demonstrate that the NES–based near–optimal controller can mitigate the oscillation amplitude of offshore structures significantly. Moreover, the NES–based optimal controller outperforms the one based on active tuned mass damper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.