Although the ras genes have long been established as proto-oncogenes, the dominant role of activated ras in cell transformation has been questioned. Previous studies have shown frequent loss of the wildtype Kras2 allele in both mouse and human lung adenocarcinomas. To address the possible tumor suppressor role of wildtype Kras2 in lung tumorigenesis, we have carried out a lung tumor bioassay in heterozygous Kras2-deficient mice. Mice with a heterozygous Kras2 deficiency were highly susceptible to the chemical induction of lung tumors when compared to wildtype mice. Activating Kras2 mutations were detected in all chemically induced lung tumors obtained from both wildtype and heterozygous Kras2-deficient mice. Furthermore, wildtype Kras2 inhibited colony formation and tumor development by transformed NIH/3T3 cells and a mouse lung tumor cell line containing an activated Kras2 allele. Allelic loss of wildtype Kras2 was found in 67% to 100% of chemically induced mouse lung adenocarcinomas that harbor a mutant Kras2 allele. Finally, an inverse correlation between the level of wildtype Kras2 expression and extracellular signal-regulated kinase (ERK) activity was observed in these cells. These data strongly suggest that wildtype Kras2 has tumor suppressor activity and is frequently lost during lung tumor progression.
Lung cancer, primarily associated with tobacco use, is the leading cause of cancer morbidity and mortality in the United States. Squamous cell carcinoma (SCC) is one of the four major histological types of lung cancer. Although there are several established models for lung adenoma and adenocarcinomas, there is no well-established mouse model for lung SCC. We treated eight different inbred strains of mice with N-nitroso-trischloroethylurea by skin painting and found that this regimen induced lung SCCs in five strains of mouse (SWR/J, NIH Swiss, A/J, BALB/cJ, and FVB/J) but not in the others (AKR/J, 129/svJ, and C57BL/6J). Mouse lung SCCs have similar histopathological features and keratin staining to human SCC. Moreover, a wide spectrum of abnormal lung squamous phenotypes including hyperplasia, metaplasia, carcinoma in situ, and invasive carcinoma, were observed. There are strain-specific differences in susceptibility to Lscc induction by N-nitroso-tris-chloroethylurea with NIH Swiss, A/J, and SWR/J mice developing scores of SCCs whereas the resistant strains AKR/J, 129/svJ, and C57BL/6J failed to develop any SCCs. FVB/J and BALB/cJ mice had an intermediate response. We conducted whole-genome linkage disequilibrium analysis in seven strains of mice, divided into three phenotype categories of susceptibility, using Fisher's exact test applied to 6,128 markers in publically available databases. Three markers were found significantly associated with susceptibility to SCC with the P < 0.05. They were D1Mit169, D3Mit178, and D18Mit91. Interestingly, none of these sites overlap with the major susceptibility loci associated with lung adenoma/adenocarcinoma development in mice. The mouse SCC described here is highly significant for preclinical studies of lung cancer chemopreventive agents because most human trials have been conducted against precancerous lesions for SCC. Furthermore, this model can be used in determining genetic modifiers that contribute to susceptibility or resistance to lung SCC development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.