Exotic topological and transport properties of Weyl semimetals have generated a lot of excitement in the condensed matter community. Here we show that Weyl semimetals in a strong magnetic field are highly unusual optical materials. The propagation of electromagnetic waves is affected by an interplay between the plasmonic response of chiral Weyl fermions and extreme anisotropy induced by a magnetic field. The resulting magnetopolaritons possess a number of peculiar properties, such as hyperbolic dispersion, photonic stop bands, coupling-induced transparency, and broadband polarization conversion. These effects can be used for optical spectroscopy of these materials including detection of the chiral anomaly or for broadband terahertz or infrared applications.
We consider a quantum-electrodynamic problem of the spontaneous emission from a twodimensional (2D) emitter, such as a quantum well or a 2D semiconductor, placed in a quasi-2D waveguide or cavity with subwavelength confinement in one direction. We apply the Heisenberg-Langevin approach which includes dissipation and fluctuations in the electron ensemble and in the electromagnetic field of a cavity on equal footing. The Langevin noise operators that we introduce do not depend on any particular model of dissipative reservoir and can be applied to any dissipation mechanism. Moreover, our approach is applicable to nonequilibrium electron systems, e.g. in the presence of pumping, beyond the applicability of the standard fluctuation-dissipation theorem. We derive analytic results for simple but practically important geometries: strip lines and rectangular cavities. Our results show that a significant enhancement of the spontaneous emission, by a factor of order 100 or higher, is possible for quantum wells and other 2D emitters in a subwavelength cavity.
Ultracompact nonlinear optical devices utilizing two-dimensional (2D) materials and nanostructures are emerging as important elements of photonic circuits. Integration of the nonlinear material into a subwavelength cavity or waveguide leads to a strong Purcell enhancement of the nonlinear processes and compensates for a small interaction volume. The generic feature of such devices which makes them especially challenging for analysis is strong dissipation of both the nonlinear polarization and highly confined modes of a subwavelength cavity. Here we solve a quantum-electrodynamic problem of the spontaneous and stimulated parametric down-conversion in a nonlinear quasi-2D waveguide or cavity. We develop a rigorous Heisenberg-Langevin approach which includes dissipation and fluctuations in the electron ensemble and in the electromagnetic field of a cavity on equal footing. Within a relatively simple model, we take into account the nonlinear coupling of the quantized cavity modes, their interaction with a dissipative reservoir and the outside world, amplification of thermal noise and zero-point fluctuations of the electromagnetic field, and other relevant effects. We derive closed-form analytic results for relevant quantities such as the spontaneous parametric signal power and the threshold for parametric instability. We find a strong reduction in the parametric instability threshold for 2D nonlinear materials in a subwavelength cavity and provide a comparison with conventional nonlinear photonic devices. arXiv:1801.07227v2 [physics.optics]
We have performed time-resolved terahertz absorption measurements on photoexcited electronhole pairs in undoped GaAs quantum wells in magnetic fields. We probed both unbound-and bound-carrier responses via cyclotron resonance and intraexciton resonance, respectively. The stability of excitons, monitored as the pair density was systematically increased, was found to dramatically increase with increasing magnetic field. Specifically, the 1s-2p− intraexciton transition at 9 T persisted up to the highest density, whereas the 1s-2p feature at 0 T was quickly replaced by a free-carrier Drude response. Interestingly, at 9 T, the 1s-2p− peak was replaced by free-hole cyclotron resonance at high temperatures, indicating that 2D magnetoexcitons do dissociate under thermal excitation, even though they are stable against a density-driven Mott transition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.