The traditional wind turbine fault monitoring is often based on a single monitoring signal without considering the overall correlation between signals. A global condition monitoring method based on Copula function and autoregressive neural network is proposed for this problem. Firstly, the Copula function was used to construct the binary joint probability density function of the power and wind speed in the fault-free state of the wind turbine. The function was used as the data fusion model to output the fusion data, and a fault-free condition monitoring model based on the auto-regressive neural network in the faultless state was established. The monitoring model makes a single-step prediction of wind speed and power, and statistical analysis of the residual values of the prediction determines whether the value is abnormal, and then establishes a fault warning mechanism. The experimental results show that this method can provide early warning and effectively realize the monitoring of wind turbine condition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.