Over the last decade, GWAS meta-analyses have used a strict P-value threshold of 5 × 10−8 to classify associations as significant. Here, we use our current understanding of frequently studied traits including lipid levels, height, and BMI to revisit this genome-wide significance threshold. We compare the performance of studies using the P = 5 × 10−8 threshold in terms of true and false positive rate to other multiple testing strategies: (1) less stringent P-value thresholds, (2) controlling the FDR with the Benjamini–Hochberg and Benjamini–Yekutieli procedure, and (3) controlling the Bayesian FDR with posterior probabilities. We applied these procedures to re-analyze results from the Global Lipids and GIANT GWAS meta-analysis consortia and supported them with extensive simulation that mimics the empirical data. We observe in simulated studies with sample sizes ∼20,000 and >120,000 that relaxing the P-value threshold to 5 × 10−7 increased discovery at the cost of 18% and 8% of additional loci being false positive results, respectively. FDR and Bayesian FDR are well controlled for both sample sizes with a few exceptions that disappear under a less stringent definition of true positives and the two approaches yield similar results. Our work quantifies the value of using a relaxed P-value threshold in large studies to increase their true positive discovery but also show the excess false positive rates due to such actions in modest-sized studies. These results may guide investigators considering different thresholds in replication studies and downstream work such as gene-set enrichment or pathway analysis. Finally, we demonstrate the viability of FDR-controlling procedures in GWAS.
Individual sequencing studies often have limited sample sizes and so limited power to detect trait associations with rare variants. A common strategy is to aggregate data from multiple studies. For studying rare variants, jointly calling all samples together is the gold standard strategy but can be difficult to implement due to privacy restrictions and computational burden. Here, we compare joint calling to the alternative of single‐study calling in terms of variant detection sensitivity and genotype accuracy as a function of sequencing coverage and assess their impact on downstream association analysis. To do so, we analyze deep‐coverage (~82×) exome and low‐coverage (~5×) genome sequence data on 2,250 individuals from the Genetics of Type 2 Diabetes study jointly and separately within five geographic cohorts. For rare single nucleotide variants (SNVs): (a) ≥97% of discovered SNVs are found by both calling strategies; (b) nonreference concordance with a set of highly accurate genotypes is ≥99% for both calling strategies; (c) meta‐analysis has similar power to joint analysis in deep‐coverage sequence data but can be less powerful in low‐coverage sequence data. Given similar data processing and quality control steps, we recommend single‐study calling as a viable alternative to joint calling for analyzing SNVs of all minor allele frequency in deep‐coverage data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.