Highlights d CNTF induces neuronal production of IL-6 upon peripheral nerve injury d CNTF-STAT3-IL-6 mediates neuroinflammation from peripheral to central nervous systems d Schwann cells-neurons-microglia transmit neuroinflammation to the central nervous system d CNTF acts as a danger signal for nerve injury response and pain enhancement
Defective prophages, which are found in the genomes of many bacteria, are unable to complete a viral replication cycle and propagate in their hosts as healthy prophages. They package random DNA fragments derived from various sites of the host chromosome instead of their own genomes. In this study, we characterized a defective phage, PBP180, which was induced from Bacillus pumilus AB94180 by treatment with mitomycin C. Electron microscopy showed that the PBP180 particle has a head with a hexagonal outline of ~40 nm in diameter and a long tail. The DNA packaged in the PBP180 head consists of 8-kb DNA fragments from random portions of the host chromosome. The head and tail proteins of the PBP180 particle consist of four major proteins of approximately 49, 33, 16 and 14 kDa. The protein profile of PBP180 is different from that of PBSX, a well-known defective phage induced from Bacillus subtilis 168. A killing activity test against two susceptible strains each of B. subtilis and B. pumilus showed that the defective particles of PBP180 killed three strains other than its own host, B. pumilus AB94180, differing from the host-killing ranges of the defective phages PBSX, PBSZ (induced from B. subtilis W23), and PBSX4 (induced from B. pumilus AB94044). The genome of the PBP180 prophage, which is integrated in the B. pumilus AB94180 chromosome, is 28,205 bp in length, with 40 predicted open reading frames (ORFs). Further genomic comparison of prophages PBP180, PBSX, PBSZ and other PBSX-like prophage elements in B. pumilus strains revealed that their overall architectures are similar, but significant low homology exists in ORF29-ORF38, which presumably encode tail fiber proteins involved in recognition and killing of susceptible strains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.