Inkjet printing is a powerful technology for realizing high‐density pixelated perovskite light‐emitting diodes (PeLEDs). However, the coffee‐stain effect in the inkjet printing process often leads to uneven thickness and poor crystallization of printed perovskite features, which deteriorates the performance of PeLEDs. Here, a strategy is developed to suppress the coffee‐stain effect via enhancing Marangoni flow strength. An interfacial poly(vinylpyrrolidone) (PVP) layer is incorporated to tune the surface tension of the underlying hole transport layer (HTL) and enhance the perovskite crystallization. The substrate temperature is also carefully controlled to tune the printing solvent evaporation rate rationally. By optimizing the thickness of the PVP layer and the temperature of the printing stage, the coffee‐stain effect is dramatically restrained. In addition, the interfacial insulating PVP layers play a positive role in suppressing leakage current level of PeLEDs by avoiding any direct electrical contact between HTL and electron transporting layer. Finally, an inkjet‐printed PeLED with a brightness of 3640 cd m–2 and external quantum efficiency of 9.0% is achieved. This work highlights the availability of inkjet‐printing technology for fabricating patterned PeLEDs in information display applications.
We constructed a concept of the full-organic carrier collection layer (CCL) used for polymer solar cells. The CCL is composed of dipyrazino[2,3-f:2′,3′-h]quinoxaline-2,3,6,7,10,11-hexacarbonitrile as hole collection layer (HCL) and chlorine-free solvents (formic acid (FA)) processed 4,7-Diphenyl-1,10-phenanthroline (Bphen) as electron collection layer, exhibiting good solubility, and environmental protection. The FA based device shows ideal power conversion efficiency (3.75%), which is higher than that of control device (3.6%). Besides, the HCL shows a different mechanism in hole extraction by functioning as a charge recombination zone for electrons injected from anode and holes extracted from the donor materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.