Porosity defects are currently a major factor that hinders the widespread adoption of laser-based metal additive manufacturing technologies. One common porosity occurs when an unstable vapor depression zone (keyhole) forms because of excess laser energy input. With simultaneous high-speed synchrotron x-ray imaging and thermal imaging, coupled with multiphysics simulations, we discovered two types of keyhole oscillation in laser powder bed fusion of Ti-6Al-4V. Amplifying this understanding with machine learning, we developed an approach for detecting the stochastic keyhole porosity generation events with submillisecond temporal resolution and near-perfect prediction rate. The highly accurate data labeling enabled by operando x-ray imaging allowed us to demonstrate a facile and practical way to adopt our approach in commercial systems.
Slamming water impact occurs frequently on high-speed craft and restricts the operating envelope of a vessel. One approach to understanding the hydroelastic nature of this phenomenon is to study the vertical impact of a V-shaped wedge on calm water, which models a single slamming event after a vessel has become partially airborne. The dynamic structural response of the bottom plate of a wedge dropped vertically (drop height = 7.9 cm) is investigated both experimentally and computationally. The experiments were conducted with a flexible bottom model at Virginia Tech. Pressure on the wedge bottom, rigid body motion (vertical acceleration and vertical position), and full-field out-of-plane deflection were measured. The out-of-plane deflection was measured using stereoscopic digital image correlation. Predictions on the hydrodynamic pressure field were made using Wagner's method, Vorus's method, and an unsteady Reynolds-averaged Navier-Stokes solver, all assuming a rigid plate. In the present work, the reconstructed pressure distribution from the experiment was used as the loading condition in a dynamic, linear finite element plate model (one-way coupled approach). Both the predicted pressure and predicted deflection were compared with the experiment. It was found that in the experiment, there is a slight reduction in the measured hydrodynamic pressure compared with predictions. This reduction in pressure leads to a reduction in the reactions at the plate edges, which get transmitted to the frames of the vessel. This slight reduction at small loading cases has the potential to be more noticeable when more severe slamming loads are encountered. 1. Introduction Slamming water impacts occur when a vessel impacts the water surface at high speed relative to the free surface. Water impact was first studied by von Karman (1929) with the application of seaplane landing. Water impact, as it pertains to slamming, gradually attracted increasing attention in the application of high-speed craft. The understanding of this phenomenon has been applied to the structural design and evaluation of the operational envelope of high-speed planing craft. Sailors also consider slamming a serious risk because it contributes to major injuries in addition to mission-related setbacks such as speed reduction or heading change. The present investigation of slamming can lead to the development of better design criteria for small craft.
The competition between epitaxial vs. equiaxed solidification has been investigated in CMSX-4 single crystal superalloy during laser melting as practiced in additive manufacturing. Single-track laser scans were performed on a powder-free surface of directionally solidified CMSX-4 alloy with several combinations of laser power and scanning velocity. Electron backscattered diffraction (EBSD) mapping facilitated identification of new orientations, i.e., “stray grains” that nucleated within the fusion zone along with their area fraction and spatial distribution. Using high-fidelity computational fluid dynamics simulations, both the temperature and fluid velocity fields within the melt pool were estimated. This information was combined with a nucleation model to determine locations where nucleation has the highest probability to occur in melt pools. In conformance with general experience in metals additive manufacturing, the as-solidified microstructure of the laser-melted tracks is dominated by epitaxial grain growth; nevertheless, stray grains were evident in elongated melt pools. It was found that, though a higher laser scanning velocity and lower power are generally helpful in the reduction of stray grains, the combination of a stable keyhole and minimal fluid velocity further mitigates stray grains in laser single tracks.
_ In this article, a free-falling flexible wedge into calm water is experimentally studied to understand the relationship between the spray root, peak pressure, and structural response. High-speed cameras are employed to record the spray root propagation, whereas hydrodynamic loading is measured with an array of pressure transducers. Stereoscopic-Digital Image Correlation (S-DIC) is used to measure deflection on the bottom of the wedge during the impact. Experiments are conducted from different drop heights to study the effect of impact velocity. Results are interpreted in light of an experimental data set of a rigid wedge of comparable dimensions. The comparison between the rigid and flexible wedges shows that due to fluid-structure interaction, the evolution of the spray root on a flexible wedge is slightly delayed compared to the rigid one. Introduction Nowadays, high-speed planing craft are widely used in commercial, recreational, and naval applications. As the growth in utilization of these vessels is observed, naval architects strive to improve the overall performance while the safety metrics are adequately maintained. One of the major concerns that challenges both the performance and structural strength of small high-speed craft is hull slamming. Once the vessel is subject to incoming waves, the hull repeatedly becomes airborne and then impacts the water surface. These slams cause operators to reduce the speed, and the maneuverability of the vessel is also influenced. Additionally, slamming can lead to the serious injury of sailors in rough sea conditions. Severe motion of the vessel because of the impact may also adversely affect the operability of equipment on board, meaning that autonomous vessels are still vulnerable to these types of loading events. As a result, it is crucial to study and understand the slamming in high-speed craft in order to mitigate its negative effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.