This paper pursues obtaining Jacobi spectral collocation methods to solve Caputo fractional differential equations numerically. We used the shifted Jacobi–Gauss–Lobatto or Jacobi–Gauss–Radau quadrature nodes as the collocation points and derived the fractional differentiation matrices for Caputo fractional derivatives. With the fractional differentiation matrices, the fractional differential equations were transformed into linear systems, which are easier to solve. Two types of fractional differential equations were used for the numerical simulations, and the numerical results demonstrated the fast convergence and high accuracy of the proposed methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.