<b><i>Background:</i></b> Acne inversa/hidradenitis suppurativa (HS) is a chronic, recurrent inflammatory disease of the skin that can significantly affect patients’ quality of life. The etiology and pathogenesis of HS are unclear and gene mutations might play a role. <b><i>Summary:</i></b> The primary focus of the review is on aggregating the gene mutations reported, summarizing the structure of γ-secretase and analyzing and speculating about the mechanism and the underlying relations between gene mutation and functional changes of protein. The systematic literature review was done by searching the PubMed, Embase, and Web of Science databases. γ-Secretase is an intramembrane protease complex responsible for the intramembranous cleavage of more than 30 type-1 transmembrane proteins including amyloid precursor protein and Notch receptors. The protein complex consists of four hydrophobic proteins: presenilin, presenilin enhancer-2 (PSENEN), nicastrin, and anterior pharynx defective 1 (APH1). To date, 57 mutations of γ-secretase genes have been reported in 70 patients or families worldwide, including 39 in NCSTN, 14 in PSENEN, and 4 in PSEN1, of which 17 are frameshifts, 15 result in nonsense mutations, 13 in missense mutations, and 12 are splice site mutations. Given the structure of γ-secretase and analysis of related mutation loci of NCSTN, PSENEN, and PSEN1, mutations in γ-secretase genes could affect activation of presenilin, prevent substrate binding, and hinder intramembrane cleavage of select proteins.
Background We proposed a method of using electrical stimulation for treatment of malignant melanoma through directly spray-printing liquid metal on skin as soft electrodes to deliver low intensity, intermediate frequency electric fields. Methods With patterned conductive liquid metal components on mice skin and under assistance of a signal generator, a sine wave electrical power with voltage of 5 V and 300 kHz could be administrated on treating malignant melanoma tumor. Findings The experiments demonstrated that tumor volume was significantly reduced compared with that of the control group. Under the designed parameters (signal: sine wave, signal amplitude Vpp: 5 V and Vpp: 4 V, frequency: 300 kHz) of Tumor treating fields (TTFields) with the sprayed liquid metal electrode, four mice tumor groups became diminishing after 1 week of treatment. The only device-related side effect as seen was a mild to moderate contact dermatitis underneath the field delivering electrodes. The SEM images and pathological analysis demonstrated the targeted treating behavior of the malignant melanoma tumor. Further, thermal infrared imaging experiments indicated that there occur no evident heating effects in the course of treatment. Besides, the liquid metal is easy to remove through medical alcohol. Conclusions Tumor treating fields through liquid metal electrode could offer a safe, straightforward and effective treatment modality which evidently slows down tumor growth in vivo. These promising results also raised the possibility of applying spray-printing TTFields as an easy going physical way for future cancer therapy.
Background Syphilis is a chronic sexually transmitted disease caused by infection with Treponema pallidum, which can invade various system organs, leading to clinical manifestations such as neurosyphilis, ocular syphilis, and cardiovascular syphilis and seriously endangering human health. Serofast status is a
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.