Accurate extraction of EEG signal characteristics during exercise fatigue can provide a scientific basis for sports fatigue detection and exercise fatigue injury treatment. In this paper, based on multivariate empirical mode decomposition (MEMD) and Hilbert-Huang (HHT) algorithm, feature extraction of EEG signals during exercise fatigue is performed. MEMD extends standard experience mode to multi-channel signal processing and solves traditional algorithms. It is not suitable for self-adaptability, modal aliasing, and scale alignment. It is suitable for analyzing multi-time sequence; multi-channel and multi-scale EEG signal decomposition. After the original EEG signal passes through the MEMD, the energy mean, median and standard deviation of the EEG bands in different levels are calculated and used to form the feature set. Then the support vector machine (SVM) classifier is used to classify the extract the extracted features. The simulation results show that the proposed method can effectively extract the features of EEG signals during exercise fatigue.INDEX TERMS Exercise fatigue, EEG signal, multivariate empirical mode decomposition, Hilbert-Huang transform.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.