Background Post‐occlusive reactive hyperemia (PORH) test with signal spectral analysis coupled provides potential indicators for the assessment of microvascular functions. Objective The objective of this study is to investigate the variations of skin blood flow and temperature spectra in the PORH test. Furthermore, to quantify the oscillation amplitude response to occlusion within different frequency ranges. Materials and methods Ten healthy volunteers participated in the PORH test and their hand skin temperature and blood flow images were captured by infrared thermography (IRT) and laser speckle contrast imaging (LSCI) system, respectively. Extracted signals from selected areas were then transformed into the time‐frequency space by continuous wavelet transform for cross‐correlation analysis and oscillation amplitude response comparisons. Results The LSCI and IRT signals extracted from fingertips showed stronger hyperemia response and larger oscillation amplitude compared with other areas, and their spectral cross‐correlations decreased with frequency. According to statistical analysis, their oscillation amplitudes in the PORH stage were obviously larger than the baseline stage within endothelial, neurogenic, and myogenic frequency ranges (p < 0.05), and their quantitative indicators of oscillation amplitude response had high linear correlations within endothelial and neurogenic frequency ranges. Conclusion Comparisons of IRT and LSCI techniques in recording the reaction to the PORH test were made in both temporal and spectral domains. The larger oscillation amplitudes suggested enhanced endothelial, neurogenic, and myogenic activities in the PORH test. We hope this study is also significant for investigations of response to the PORH test by other non‐invasive techniques.
Real-time polymerase chain reaction (PCR) technology is essential in nucleic acid detection and point-of-care testing (POCT). However, nowadays, the classical qPCR instrument has the deficiency of its bulky volume, high cost, and inconvenience to use; hence, a low-cost and easy-to-use PCR equipment was thus developed consisting of a hardware subsystem as well as a software subsystem based on an improved proportional-integral-derivative (PID) system. The proposed system not only could hold self-setting reaction cycles of temperature rising and falling automatically but also the temperature during the constant temperature stage was regulated steady based on improved temperature control algorithm, which proved its great effect compared with the reaction temperature derived from an infrared thermal imaging camera. The experimental results in gene detection research also could indicate its applicability and stability of our developed PCR system by using the amplification curve analysis, the melting curve analysis, and agarose gel electrophoresis analysis compared with the commercial PCR instrument, which illustrates the great potential application value of the proposed PCR system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.