The present study examined the effect of Lactobacillus plantarum ATCC14917 fermentation on the chemical composition and antioxidant activity of apple juice. Apple juice was fermented and examined of its antioxidant activity using chemical models and cellular antioxidant assay. Furthermore, the chemical composition of fermented apple juice was characterized by LC-MS/MS. Lactobacillus plantarum ATCC14917 fermentation showed an increase in DPPH and ABTS radical scavenging activity as well as cellular antioxidant activity of apple juice. However, fermentation decreased the total phenolic and flavonoid content. Subsequent LC-MS/MS analysis of the phenolic profile indicated that the content of 5-O-caffeoylquinic acid (5-CQA), quercetin, and phloretin with strong antioxidant activity was increased significantly after fermentation. The modified phenolic composition may contribute to the increased antioxidant activity of fermented apple juice. Our findings showed that Lactobacillus plantarum ATCC14917 fermentation may be an efficient way to enhance the bioavailability of phenolic compounds and to protect cells from oxidative stress.
Implantable bioelectronic devices for the simulation of peripheral nerves could be used to treat disorders that are resistant to traditional pharmacological therapies. However, for many nerve targets, this requires invasive surgeries and the implantation of bulky devices (about a few centimetres in at least one dimension). Here we report the design and in vivo proof-of-concept testing of an endovascular wireless and battery-free millimetric implant for the stimulation of specific peripheral nerves that are difficult to reach via traditional surgeries. The device can be delivered through a percutaneous catheter and leverages magnetoelectric materials to receive data and power through tissue via a digitally programmable 1 mm × 0.8 mm system-on-a-chip. Implantation of the device directly on top of the sciatic nerve in rats and near a femoral artery in pigs (with a stimulation lead introduced into a blood vessel through a catheter) allowed for wireless stimulation of the animals’ sciatic and femoral nerves. Minimally invasive magnetoelectric implants may allow for the stimulation of nerves without the need for open surgery or the implantation of battery-powered pulse generators.
This paper presents a novel transcranial magnetic stimulation (TMS) pulse generator with a wide range of pulse shape, amplitude, and width. Approach. The novel MM-TMS device is the first to use a modular multi-level circuit topology at full TMS energy levels. It consists of ten cascaded H-bridge modules, each implemented with insulated-gate bipolar transistors, enabling both novel high-amplitude ultrabrief pulses as well as pulses with conventional amplitude and duration. The MM-TMS device has 21 available output voltage levels within each pulse, allowing flexible synthesis of various pulse waveforms and sequences. The circuit further allows charging the energy storage capacitor on each of the ten cascaded modules with a conventional TMS power supply. Main results. The MM-TMS device can output peak coil voltages and currents of 11 kV and 10 kA, respectively, enabling ultrabrief suprathreshold pulses (> 8.25 μs active electric field phase). Further, the MM-TMS device can generate a wide range of near-rectangular monophasic and biphasic pulses, as well as more complex sinusoidal, polyphasic, and amplitude-modulated pulses. At matched estimated stimulation strength, briefer pulses emit less sound, which could enable quieter TMS. Finally, the MM-TMS device can instantaneously increase or decrease the amplitude from one pulse to the next by adding or removing modules in series, which enables rapid pulse sequences and paired-pulse protocols with various pulse shapes. Significance. The MM-TMS device allows unprecedented control of the pulse characteristics which could enable novel protocols and quieter operation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.