SCL/TAL1 interrupting locus (STIL) regulates the mitotic centrosome to promote the centriolar replication and cell cycling, and is associated with malignancies. However, the role and mechanism of STIL in gastric cancer (GC) remain elusive. STIL expression in GC tissue microarray was detected by immunohistochemistry (IHC). GC cells were transduced with control lentivirus or lentivirus for expression STIL‐specific shRNA and the effect of STIL silencing on the malignant behaviors of GC cells was measured in vitro and in vivo. The potential mechanisms underlying the action of STIL were analyzed by transcriptome microarray and bioinformatics. STIL expression was up‐regulated in GC tissues both in our cohort and the data from the cancer genome atlas, and positively associated with T stage and poor overall survival of GC patients. Knockdown of STIL significantly inhibited the proliferation and clonogenicity of human GC cells and attenuated the growth of implanted GC in vivo. Furthermore, STIL silencing induced cell cycle arrest in G2/M phase and apoptosis of GC cells. Transcriptome analysis indicated that STIL silencing modulated many gene expression, particularly for down‐regulating the IGF‐1/PI3K/AKT pathway. In addition, treatment with SC79, an AKT activator, significantly mitigated the effect of STIL‐silencing in GC cells. In conclusion, STIL promotes gastric carcinogenesis and progression by enhancing the IGF‐1/PI3K/AKT signaling, and STIL may be a novel target for intervention of GC.
<b><i>Introduction:</i></b> White matter injury (WMI) is the most common brain injury in preterm infants and can result in life-long neurological deficits. The main cause of WMI is damage to the oligodendrocyte precursor cells (OPC) in the brain that results in delayed myelin sheath formation, or the destruction of existing myelin sheaths. OPC undergo highly regulated and strictly timed developmental changes that result in their transformation to mature oligodendrocytes capable of myelin production. <b><i>Objective:</i></b> Studies have shown that clobetasol strongly promotes differentiation of OPC into myelin sheaths. Therefore, we hypothesized that clobetasol may be a therapeutic option for the treatment of preterm WMI. <b><i>Methods:</i></b> We induced a WMI rat model and observed white matter damage under an optical microscope. Rats subjected to WMI were injected intraperitoneally with clobetasol (2 or 5 mg/kg daily) from day 1 to day 5 in the early treatment groups, or from day 6 to day 10 in the late treatment groups. After 17 days, the rats were sacrificed and the expression of myelin basic protein (MBP) was visualized using immunofluorescence. In addition, we evaluated myelin sheath formation using electron microscopy. The rats were also subjected to the suspension test, ramp test, and open field test to evaluate neurobehavioral functions. <b><i>Results:</i></b> A rat model of WMI was successfully induced. It was found that clobetasol significantly induced MBP expression and myelin sheath formation and improved neurobehavioral function in the rats subjected to WMI. <b><i>Conclusions:</i></b> Our results indicate that clobetasol attenuates WMI by promoting OPC differentiation, and it may be an effective therapeutic agent for the treatment of preterm WMI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.