Epidermal growth factor receptor (EGFR) has been well characterized as an important target for cancer therapy. Immunotherapy based on EGFR-specific antibodies (e.g., panitumumab and cetuximab) has shown great clinical promise. However, increasing evidence has indicated that only a subgroup of patients receiving these antibodies will benefit from them, and even patients who do initially experience a major response may eventually develop therapeutic resistance. In this study, we investigated whether panitumumab and cetuximab can serve as delivery vehicles for tumor-targeted radionuclide therapy in a preclinical tumor model that did not respond to immunotherapy. The in vitro toxicity and cell binding properties of panitumumab and cetuximab were characterized. Both antibodies were conjugated with 1,4,7,10-tetraazadodecane-N,N',N",N"'-tetraacetic acid (DOTA) and radiolabeled with (177)Lu. Small-animal SPECT/CT, biodistribution, and radioimmunotherapy (RIT) studies of (177)Lu-DOTA-panitumumab ((177)Lu-Pan) and (177)Lu-DOTA-cetuximab ((177)Lu-Cet) were performed in the UM-SCC-22B tumor model. Both (177)Lu-Pan and (177)Lu-Cet exhibited favorable tumor targeting efficacy. The tumor uptake was 20.92 ± 4.45, 26.10 ± 5.18, and 13.27 ± 1.94% ID/g for (177)Lu-Pan, and 15.67 ± 3.84, 15.72 ± 3.49, and 7.82 ± 2.36% ID/g for (177)Lu-Cet at 24, 72, and 120 h p.i., respectively. RIT with a single dose of 14.8 MBq of (177)Lu-Pan or (177)Lu-Cet significantly delayed tumor growth. (177)Lu-Pan induced more effective tumor growth inhibition due to a higher tumor uptake. Our results suggest that panitumumab and cetuximab can function as effective carriers for tumor-targeted delivery of radiation, and that RIT is promising for targeted therapy of EGFR-positive tumors, especially for those tumors that are resistant to antibody-based immunotherapy.
Antiangiogenic therapy is an effective strategy to inhibit tumor growth. Endostar, as an approved antiangiogenesis agent, inhibits the newborn vascular endothelial cells, causing the decrease of integrin αvβ3 expression. Radiolabeled 3PRGD2, a novel PEGlayted RGD dimer probe (PEG4-E[PEG4-c(RGDfK)]2) showed highly specific targeting capability to integrin αvβ3, which could be used for monitoring the efficacy of Endostar antiangiogenic therapy. In this study, (68)Ga-3PRGD2 PET imaging was performed in Endostar treated/untreated Lewis Lung Carcinoma (LLC) mice on days 3, 7, 14, and 21 post-treatment for monitoring the tumor response to Endostar treatment, with the (18)F-FDG imaging as control. As a result, (68)Ga-3PRGD2 PET reflected the tumor response to Endostar antiangiogenic therapy much earlier (day 3 post-treatment vs day 14 post-treatment) and more accurately than that of (18)F-FDG metabolic imaging, which provides new opportunities to develop individualized therapeutic approaches, establish optimized dosages and dose intervals for effective treatment that improve the survival rate of patients.
Epidermal growth factor receptor mutant III (EGFRvIII) is exclusively expressed in tumors, such as glioblastoma, breast cancer and hepatocellular carcinoma, but never in normal organs. Increasing evidence suggests that EGFRvIII has clinical significance in glioblastoma prognosis due to its enhanced tumorigenicity and chemo/radio resistance, thus the development of an imaging approach to early detect EGFRvIII expression with high specificity is urgently needed. To illustrate this point, we developed a novel anti-EGFRvIII monoclonal antibody 4G1 through mouse immunization, cell fusion and hybridoma screening and then confirmed its specificity and affinity by a serial of assays. Following biodistribution and small animal single-photon emission computed tomography (SPECT/CT) imaging of 125I-4G1 in EGFRvIII positive/negative tumor-bearing mice were performed and evaluated to verify the tumor accumulation of this radiotracer. The biodistribution indicated that 125I-4G1 showed prominent tumor accumulation at 24 h post-injection, which reached maximums of 11.20 ± 0.75% ID/g and 13.98 ± 0.57% ID/g in F98npEGFRvIII and U87vIII xenografts, respectively. In contrast, 125I-4G1 had lower tumor accumulation in F98npEGFR and U87MG xenografts. Small animal SPECT/CT imaging revealed that 125I-4G1 had a higher tumor uptake in EGFRvIII-positive tumors than that in EGFRvIII-negative tumors. This study demonstrates that radiolabeled 4G1 can serve as a valid probe for the imaging of EGFRvIII expression, and would be valuable into the clinical translation for the diagnosis, prognosis, guiding therapy, and therapeutic efficacy evaluation of tumors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.