As a biomass waste, hemp stems have the advantages of low cost and abundance, and it is regarded as a promising anode material with a high specific capacity. In this paper, activated carbon derived from hemp stems is prepared by low-temperature carbonization and high-temperature activation. The results of characterizations show the activated carbon has more pores due to the advantages of natural porous structure of hemp stem. The aperture size is mainly microporous, and there are mesopores and macropores in the porous carbon. The porous carbon has an excellent reversible capacity of 495 mAh/g after 100 cycles at 0.2 °C as the anode of lithium-ion battery. Compared with the graphite electrode, the electrochemical property of activated carbon is significantly improved due to the reasonable distribution of pore size. The preparation of the activated carbon provides a new idea for low cost and rapid preparation of anode materials for high capacity lithium-ion batteries.
The cryogenic process has been widely applied in various fields, but it has rarely been reported in the preparation of anode materials for lithium-ion battery. In this paper, activated carbon derived from hemp stems was prepared by carbonization and activation; then, it was subjected to cryogenic treatment to obtain cryogenic activated carbon. The characterization results show that the cryogenic activated carbon (CAC) has a richer pore structure than the activated carbon (AC) without cryogenic treatment, and its specific surface area is 1727.96 m2/g. The porous carbon had an excellent reversible capacity of 756.8 mAh/g after 100 cycles at 0.2 C as anode of lithium-ion battery, in which the electrochemical performance of CAC was remarkably improved due to its good pore structure. This provides a new idea for the preparation of anode materials for high-capacity lithium-ion batteries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.