Axial flux permanent-magnet synchronous machines (PMSMs) are very suitable candidates for the power train of electric vehicles (EVs) due to high power density and high efficiency. This paper researches an axial flux PMSM with radially sliding permanent magnets (PMs) to fulfill field-weakening control. The field weakening principle and the structure of this kind of axial flux PMSM by mechanical method of sliding PMs are proposed and analyzed. The influences of radially sliding PMs on magnetic flux density distribution, inductance, flux linkage and torque are analyzed and discussed based on 3D finite element method (FEM). The field weakening capabilities by mechanical method and electrical method are compared. The field weakening capability of the machine can be much improved by the optimized combination of the two methods, which is very satisfying for EV drive application. The forces on the PMs are analyzed and calculated. The hysteretic characteristics caused by the friction of the PMs are investigated, which provide useful reference for designing this kind of machine.
Abstract:A novel modular arc-linear flux-switching permanent-magnet motor (MAL-FSPM) used for scanning system instead of reduction gearboxes and kinematic mechanisms is proposed and researched in this paper by the finite element method (FEM). The MAL-FSPM combines characteristics of flux-switching permanent-magnet motor and linear motor and can realize the direct driving and limited angular movement. Structure and operation principle of the MAL-FSPM are analyzed. Cogging torque model of the MAL-FSPM is established. The characteristics of cogging torque and torque ripple are investigated for: (1) distance (d end ) between left end of rotor and left end of stator is more than two rotor tooth pitch (τ p ); and (2) d end is less than two rotor tooth pitch. Cogging torque is an important component of torque ripple and the period ratio of the cogging torque to the back electromotive force (EMF) equals one for the MAL-FSPM before optimization. In order to reduce the torque ripple as much as possible and affect the back EMF as little as possible, influence of period ratio of cogging torque to back EMF on rotor step skewing is investigated. Rotor tooth width and stator slot open width are optimized to increase the period ratio of cogging torque to back EMF. After the optimization, torque ripple is decreased by 79.8% for d end > τ p and torque ripple is decreased by 49.7% for d end < τ p . Finally, 3D FEM model is established to verify the 2D results.Keywords: modular arc-linear flux-switching permanent-magnet motor (MAL-FSPM); cogging torque; torque ripple; harmonics; period ratio of cogging torque to back electromotive force (EMF); rotor step skewing; finite element method (FEM)
This paper investigates of a kind of five-phase dual-rotor permanent-magnet synchronous motor (DRPMSM), which contains dual rotors and a single stator. This kind of motor has the potential advantages of high power density, high reliability and high efficiency, which make it more appropriate for using in electric vehicles (EVs). In order to evaluate the most suitable power level for this kind of structure, the electromagnetic, the thermal and the mechanical characteristics are investigated in this paper. The length to diameter ratio of motors is researched to obtain the highest power density and then the optimum ratio is obtained. Based on the optimum ratio, the thermal characteristics are researched under natural condition and forced-air cooling condition with different wind speeds. In addition, the mechanical characteristics are analyzed under no-load and different loads conditions, respectively. All of the results are analyzed by two-dimension (2-D) and three-dimension (3-D) finite element method (FEM) simulation, which provide a good reference to select suitable power level for this kind of motor structure. Finally, a DRPMSM prototype is manufactured and tested. The experimental results effectively verify the FEM results.
Abstract:Due to advantages such as high energy density, high power density, rapid charge and discharge, high cyclic-life, and environmentally friendly, flywheel energy storage systems (FESs) are widely used in various fields. However, the performance of FES systems depends on the performance of a high speed machine, therefore, the design and optimization of a high efficiency and high power density machine are very crucial to improve the performance of the whole FES system. In this paper, a high speed permanent-magnet synchronous machine (PMSM) is researched. Considering the requirement of low torque ripple in low speed and loss caused by back electromotive force (EMF) harmonics, the electromagnetic performance is improved from points of view of slot/pole matching, magnetic-pole embrace with the finite element method (FEM). Furthermore, the magnetic-pole eccentricity, the slot opening, the thickness of PM and air-gap length are also optimized with Taguchi method. The electromagnetic performance, such as torque ripple, cogging torque, average torque and back EMF wave are much improved after optimization. Finally, experiments are carried out to verify the calculated results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.