At the molecular level, members of the NKx2.2 family of transcription factors establish neural compartment boundaries by repressing the expression of homeobox genes specific for adjacent domains [Muhr et al. (2001) Cell, 104, 861–873; Weiss et al. (1998) Genes Dev., 12, 3591–3602]. The Drosophila homologue, vnd, interacts genetically with the high-mobility group protein, Dichaete, in a manner suggesting co-operative activation [Zhao and Skeath (2002) Development, 129, 1165–1174]. However, evidence for direct interactions and transcriptional activation is lacking. Here, we present molecular evidence for the interaction of Vnd and Dichaete that leads to the activation of target gene expression. Two-hybrid interaction assays indicate that Dichaete binds the Vnd homeodomain, and additional Vnd sequences stabilize this interaction. In addition, Vnd has two activation domains that are typically masked in the intact protein. Whether vnd can activate or repress transcription is context-dependent. Full-length Vnd, when expressed as a Gal4 fusion protein, acts as a repressor containing multiple repression domains. A divergent domain in the N-terminus, not found in vertebrate Vnd-like proteins, causes the strongest repression. The co-repressor, Groucho, enhances Vnd repression, and these two proteins physically interact. The data presented indicate that the activation and repression domains of Vnd are complex, and whether Vnd functions as a transcriptional repressor or activator depends on both intra- and inter-molecular interactions.
Vnd is a dual transcriptional regulator that is essential for Drosophila dorsal-ventral patterning. Yet, our understanding of the biochemical basis for its regulatory activity is limited. Consistent with Vnd's ability to repress target expression in embryos, endogenously expressed Vnd physically associates with the co-repressor, Groucho, in Drosophila Kc167 cells. Vnd exists as a single complex in Kc167 cells in contrast to embryonic Vnd, which forms multiple high molecular weight complexes. Unlike its vertebrate homologue, Nkx2.2, full length Vnd can bind its target in EMSA, suggesting that co-factor availability may influence Vnd's weak regulatory activity in transient transfections. We identify the HMG1-type protein, D1, and the novel HLH protein, Olig, as novel Vnd-interacting proteins using co-immunoprecipitation assays. Furthermore, we demonstrate that both D1 and Olig are co-expressed with Vnd during Drosophila embryogenesis, consistent with a biological basis for this interaction. We also suggest that the phosphorylation state of Vnd influences its ability to interact with co-factors, because we show that Vnd is extensively phosphorylated in embryos and that it can be phosphorylated by activated MAP kinase in vitro. These results highlight the complexities of Vnd-mediated regulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.