This paper studies the problem of recovering a structured signal from a relatively small number of corrupted non-linear measurements. Assuming that signal and corruption are contained in some structure-promoted set, we suggest an extended Lasso to disentangle signal and corruption. We also provide conditions under which this recovery procedure can successfully reconstruct both signal and corruption.
Corrupted sensing concerns the problem of recovering a high-dimensional structured signal from a collection of measurements that are contaminated by unknown structured corruption and unstructured noise. In the case of linear measurements, the recovery performance of different convex programming procedures (e.g., generalized Lasso and its variants) is well established in the literature. However, in practical applications of digital signal processing, the quantization process is inevitable, which often leads to non-linear measurements. This paper is devoted to studying corrupted sensing under quantized measurements. Specifically, we demonstrate that, with the aid of uniform dithering, both constrained and unconstrained Lassos are able to recover signal and corruption from the quantized samples when the measurement matrix is sub-Gaussian. Our theoretical results reveal the role of quantization resolution in the recovery performance of Lassos. Numerical experiments are provided to confirm our theoretical results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.