Real-time prediction of vehicle trajectory at unsignalized intersections is important for real-time traffic conflict detection and early warning to improve traffic safety at unsignalized intersections. In this study, we propose a robust real-time prediction method for turning movements and vehicle trajectories using deep neural networks. Firstly, a vision-based vehicle trajectory extraction system is developed to collect vehicle trajectories and their left-turn, go straight, and right-turn labels to train turning recognition models and multilayer LSTM deep neural networks for the prediction task. Then, when performing vehicle trajectory prediction, we propose the vehicle heading angle change trend method to recognize the future move of the target vehicle to turn left, go straight, and turn right based on the trajectory data characteristics of the target vehicle before passing the stop line. Finally, we use the trained multilayer LSTM models of turning left, going straight, and turning right to predict the trajectory of the target vehicle through the intersection. Based on the TensorFlow-GPU platform, we use Yolov5-DeepSort to automatically extract vehicle trajectory data at unsignalized intersections. The experimental results show that the proposed method performs well and has a good performance in both speed and accuracy evaluation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.