Optically pumped nonlinear frequency down conversion is a proven approach for monochromatic terahertz (THz)-wave generation that provides superior properties such as continuous and wide tunability as well as laser-like linewidth and beam quality. Phase-matching (PM) is an important connection between the pump sources and nonlinear crystals and determines the direction of energy flow (as well as the output power). In past decades, a variety of peculiar PM configurations in the THz region have been invented and are different from the traditional ones in the optical region. We summarize the configurations that have been applied in nonlinear THz-wave generation, which mainly fall in two categories: scalar (collinear) PM and vector PM (including macroscopic noncollinear PM and microscopic vector PM). The development of this technique could relax the matching conditions in a wide range of nonlinear crystals and pump wavelengths and could finally promote the improvement of coherent THz sources.
Abstract:We present a theoretical investigation of the simultaneous generation of two orthogonally polarized terahertz (THz) waves by stimulated polariton scattering (SPS) with a periodically poled LiNbO 3 (PPLN) crystal. The two orthogonally polarized THz waves are generated from SPS with A 1 and E symmetric transverse optical (TO) modes in a LiNbO 3 crystal, respectively. The parallel polarized THz wave is generated from A 1 symmetric TO modes with type-0 phase-matching of e = e + e, and the perpendicular polarized THz wave is generated from E symmetric TO modes with type-I phase-matching of e = o + o. The two types of phase-matching of e = e + e and e = o + o can be almost satisfied simultaneously by accurately selecting the poling period of the PPLN crystal. We calculate the photon flux density of the two orthogonally polarized THz waves by solving the coupled wave equations. The calculation results indicate that the two orthogonally polarized THz waves can be efficiently generated, and the relative intensities between the two orthogonally polarized THz waves can be modulated.
In this work, we propose a novel dual optical frequency comb (DOFC) generation scheme based on dual cascaded difference frequency generation (DCDFG). Feasible designs are introduced that enable the two sets of cascaded optical waves, initially generated by DCDFG in an aperiodically periodically poled lithium niobate (APPLN) crystal with a pump wave and two signal waves, then transferred to high-order Stokes waves by oscillations of cascaded Stokes waves and the optimization of phase mismatching of each-order DCDFG; finally, a DOFC was constructed. We demonstrate a high-performance DOFC with characteristics of high repetition frequency difference, tunable repetition frequency difference, high flatness, and a tunable spectral distribution range by providing a theoretical framework. We argue that the scheme proposed in this work is promising for achieving a high-quality DOFC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.