A novel coronavirus (2019-nCov) was identified in Wuhan, Hubei Province, China in December of 2019. This new coronavirus has resulted in thousands of cases of lethal disease in China, with additional patients being identified in a rapidly growing number internationally. 2019-nCov was reported to share the same receptor, Angiotensin-converting enzyme 2 (ACE2), with SARS-Cov.Here based on the public database and the state-of-the-art single-cell RNA-
Lipases are important industrial enzymes. Most of the lipases operate at lipid–water interfaces enabled by a mobile lid domain located over the active site. Lid protects the active site and hence responsible for catalytic activity. In pure aqueous media, the lid is predominantly closed, whereas in the presence of a hydrophobic layer, it is partially opened. Hence, the lid controls the enzyme activity. In the present review, we have classified lipases into different groups based on the structure of lid domains. It has been observed that thermostable lipases contain larger lid domains with two or more helices, whereas mesophilic lipases tend to have smaller lids in the form of a loop or a helix. Recent developments in lipase engineering addressing the lid regions are critically reviewed here. After on, the dramatic changes in substrate selectivity, activity, and thermostability have been reported. Furthermore, improved computational models can now rationalize these observations by relating it to the mobility of the lid domain. In this contribution, we summarized and critically evaluated the most recent developments in experimental and computational research on lipase lids.
An ultrasound‐based platform is established to prepare homogenous arrays of giant unilamellar vesicles (GUVs) or red blood cell (RBCs), or hybrid assemblies of GUV/RBCs. Due to different responses to the modulation of the acoustic standing wave pressure field between the GUVs and RBCs, various types of protocell/natural cell hybrid assemblies are prepared with the ability to undergo reversible dynamic reconfigurations from vertical to horizontal alignments, or from 1D to 2D arrangements. A two‐step enzymatic cascade reaction between transmitter glucose oxidase‐containing GUVs and peroxidase‐active receiver RBCs is used to implement chemical signal transduction in the different hybrid micro‐arrays. Taken together, the obtained results suggest that the ultrasound‐based micro‐array technology can be used as an alternative platform to explore chemical communication pathways between protocells and natural cells, providing new opportunities for bottom‐up synthetic biology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.