Improvement of soil quality after land reclamation is a key concern in mining areas. However, the characteristics and internal mechanisms of variation of bacterial community structure over different reclamation periods are currently unclear. The recovery and evolution of soil microbial community structure are important indicators of the level of soil quality improvement of reclaimed soil. Therefore, this study investigated soil samples from coal gangue-filled land after reclamation periods of 1, 6, and 15 years. To accomplish this, 16S rRNA gene libraries were produced to determine the microbial community composition of the soils. In addition, various soil microbial community characteristics in the filled reclamation areas were compared with soil samples from areas unaffected by coal mining. The results showed the following: (1) The diversity and abundance of bacterial communities in reclaimed soils was slightly different from that of natural soils. However, the soil bacterial community structure was highly similar to natural soil after a 15-year reclamation period; therefore, the recovery of bacterial communities can be used as an indicator of the effects of rehabilitation.(2) Some soil physicochemical properties are significantly correlated with the main bacteria in the soil.(3) The dominant bacteria included members of the phyla Firmicutes and Proteobacteria, as well as members of the genera Bacillus, Enterococcus, and Lactococcus. Taken together, the results of this study indicated that the application of microbial remediation technology can be used to adjust the soil microbial community structure, improve soil quality, and shorten the soil recovery period.
Increasing evidence suggests that global downregulation of miRNA expression is a hallmark of human cancer, potentially due to defects in the miRNA processing machinery. In this study, we found that the protein expression of Argonaute 2 (AGO2), a key regulator of miRNA processing, was downregulated in colorectal cancer (CRC) tissues, which was also consistent with the findings of the Clinical Proteomic Tumor Analysis Consortium (CPTAC). Furthermore, the correlation between the levels of AGO2 and epithelial-mesenchymal transition (EMT) markers (E-cadherin and vimentin) indicated that reduced levels of AGO2 promoted EMT in CRC. Low expression of AGO2 was an indicator of a poor prognosis among CRC patients. Knockdown of AGO2 in CRC cells promoted migration, invasion and metastasis formation in vitro and in vivo but had no influence on proliferation. To provide detailed insight into the regulatory roles of AGO2, we performed integrated transcriptomic, quantitative proteomic and microRNA sequencing (miRNA-seq) analyses of AGO2 knockdown cells and the corresponding wild-type cells and identified neuropilin 1 (NRP1) as a new substrate of AGO2 via miR-185-3p. Our data provided evidence that knockdown of AGO2 resulted in a reduction of miR-185-3p expression, leading to the upregulation of the expression of NRP1, which is a direct target of miR-185-3p, and elevated CRC cell metastatic capacity. Inhibition of NRP1 or treatment with a miR-185-3p mimic successfully rescued the phenotypes of impaired AGO2, which suggested that therapeutically targeting the AGO2/miR-185-3p/NRP1 axis may be a potential treatment approach for CRC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.