We benchmark several widely-used deep learning frameworks and investigate the FPGA deployment for performing traffic sign classification and detection. We evaluate the training speed and inference accuracy of these frameworks on the GPU by training FPGA-deployment-suitable models with various input sizes on GTSRB, a traffic sign classification dataset. Then, selected trained classification models and various object detection models that we train on GTSRB's detection counterpart (i.e., GTSDB) are evaluated with inference speed, accuracy, and FPGA power efficiency by varying different parameters such as floating-point precisions, batch sizes, etc. We discover that Neon and MXNet deliver the best training speed and classification accuracy on the GPU in general for all test cases, while TensorFlow is always among the frameworks with the highest inference accuracies. We observe that with the current OpenVINO release, the performance of lightweight models (e.g., MobileNet-v1-SSD, etc) usually exceeds the requirement of real-time detection without losing much accuracy, while other models (e.g., VGG-SSD, ResNet-50-SSD) generally fail to do so. We also demonstrate that we can adjust the precision of bitstreams and the batch sizes to balance inference speed and accuracy of the applications deployed on the FPGA. Finally, we show that for all test cases, the FPGA always achieves higher power efficiency than the GPU.
This work addresses the 2019 Sparse Deep Neural Network Graph Challenge with an implementation of this challenge using the GraphBLAS programming model. We demonstrate our solution to this challenge with GraphBLAST, a GraphBLAS implementation on the GPU, and compare it to SuiteSparse, a GraphBLAS implementation on the CPU. The GraphBLAST implementation is 1.94× faster than Suite-Sparse; the primary opportunity to increase performance on the GPU is a higher-performance sparse-matrix-times-sparse-matrix (SpGEMM) kernel.
Feature selection is an important preprocessing step for data in the classification and regression learning. Many feature selection algorithms have been proposed using the different information criteria based on mutual information. However, there is no such comparative study conducted to analyse the effectiveness of these methods under a specific application framework.
We benchmark several widely used deep-learning frameworks for performing deep-learning-related automotive tasks (e.g., traffic sign recognition) that need to achieve realtime and high accuracy results with limited resources available on embedded platforms such as FPGAs. In our benchmarks, we use various input image sizes on models that are suitable for FPGA deployment, and investigate the training speed and inference accuracy of selected frameworks for these different sizes on a popular traffic sign recognition dataset. We report results by running the frameworks solely on the CPU as well as by turning on GPU acceleration. We also provide optimizations we apply to fine-tune the performance of the frameworks. We discover that Neon and MXNet deliver the best training speed and inference accuracy in general for all our test cases, while Tensorflow is always among the frameworks with the highest inference accuracies. We also observe that on the particular dataset we tested on (i.e., GTSRB), the image size of the region of interest does not necessarily affect the inference accuracy, and that using deep models, e.g., ResNet-32, which have longer training times, might not provide improvements to inference accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.