Bacterial persister cells are phenotypic variants that exhibit transient antibiotic tolerance and play a leading role in chronic infections and the development of antibiotic resistance. Determining the mechanism that underlies persister formation and developing anti-persister strategies, therefore, are clinically important goals. Here, we report that many gram-negative and gram-positive bacteria become highly tolerant to typical bactericidal antibiotics when the carbon source for their antibiotic-sensitive exponential growth phase is shifted to fumarate, suggesting a role for fumarate in persister induction. Nutrient shift-induced Escherichia coli but not Staphylococcus aureus persister cells can be killed by aminoglycosides upon hypoionic shock (i.e., the absence of ions), which is achieved by suspending the persisters in aminoglycoside-containing pure water for only 1 or 2 min. Such potentiation can be abolished by inhibitors of the electron transport chain (e.g., NaN3) or proton motive force (e.g., CCCP). Additionally, we show that hypoionic shock facilitates the eradication of starvation-induced E. coli but not S. aureus persisters by aminoglycosides, and that such potentiation can be significantly suppressed by NaN3 or CCCP. Mechanistically, hypoionic shock dramatically enhances aminoglycoside uptake by both nutrient shift- and starvation-induced E. coli persisters, whereas CCCP can diminish this uptake. Results of our study illustrate the general role of fumarate in bacterial persistence and may open new avenues for persister eradication and aminoglycoside use.
In this article, a command filtering‐based adaptive event‐triggered neural network control scheme is proposed for a class of uncertain switched nonlinear systems with unknown control coefficient and input saturation. First, radial basis function neural networks are used as function approximators to estimate unknown nonlinear functions. Then, an event‐triggering mechanism based on the tracking error is introduced to avoid the over‐consumption of communication resources. Furthermore, command filters are employed to solve the problem of complexity explosion that exists in conventional backstepping control design, and the error compensation signals are designed to reduce the errors caused by the filters. Considering that the unknown control gain and input saturation exist in many practical applications, a Nussbaum‐type function is thus introduced into the controller design to address these challenging issues. Finally, stability of the closed‐loop system is strictly proven under a standard Lyapunov stability analysis framework. The effectiveness of the proposed control scheme is illustrated by a simulation example.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.