Communication in data-parallel applications often involves a collection of parallel flows. Traditional techniques to optimize flowlevel metrics do not perform well in optimizing such collections, because the network is largely agnostic to application-level requirements. The recently proposed coflow abstraction bridges this gap and creates new opportunities for network scheduling. In this paper, we address inter-coflow scheduling for two different objectives: decreasing communication time of data-intensive jobs and guaranteeing predictable communication time. We introduce the concurrent open shop scheduling with coupled resources problem, analyze its complexity, and propose effective heuristics to optimize either objective. We present Varys, a system that enables data-intensive frameworks to use coflows and the proposed algorithms while maintaining high network utilization and guaranteeing starvation freedom. EC2 deployments and trace-driven simulations show that communication stages complete up to 3.16× faster on average and up to 2× more coflows meet their deadlines using Varys in comparison to per-flow mechanisms. Moreover, Varys outperforms non-preemptive coflow schedulers by more than 5×.
Abstract-Full-duplex communication has the potential to substantially increase the throughput in wireless networks. However, the benefits of full-duplex are still not well understood. In this paper, we characterize the full-duplex rate gains in both singlechannel and multi-channel use cases. For the single-channel case, we quantify the rate gain as a function of the remaining self-interference and SNR values. We also provide a sufficient condition under which the sum of uplink and downlink rates on a full-duplex channel is concave in the transmission power levels. Building on these results, we consider the multi-channel case. For that case, we introduce a new realistic model of a compact (e.g., smartphone) full-duplex receiver and demonstrate its accuracy via measurements. We study the problem of jointly allocating power levels to different channels and selecting the frequency of maximum self-interference suppression, where the objective is maximizing the sum of the rates over uplink and downlink OFDM channels. We develop a polynomial time algorithm which is nearly optimal in practice under very mild restrictions. To reduce the running time, we develop an efficient nearly-optimal algorithm under the high SINR approximation. Finally, we demonstrate via numerical evaluations the capacity gains in the different use cases and obtain insights into the impact of the remaining selfinterference and wireless channel states on the performance.
We consider a switched (queueing) network in which there are constraints on which queues may be served simultaneously; such networks have been used to effectively model input-queued switches and wireless networks. The scheduling policy for such a network specifies which queues to serve at any point in time, based on the current state or past history of the system. In the main result of this paper, we provide a new class of online scheduling policies that achieve optimal average queue-size scaling for a class of switched networks including input-queued switches. In particular, it establishes the validity of a conjecture (documented in [24]) about optimal queue-size scaling for input-queued switches.
We propose a general framework, dubbed Stochastic Processing under Imperfect Information (SPII), to study the impact of information constraints and memories on dynamic resource allocation. The framework involves a Stochastic Processing Network (SPN) scheduling problem in which the decision maker may access the system state only through a noisy channel, and resource allocation decisions must be carried out through the interaction between an encoding policy (who observes the state) and allocation policy (who chooses the allocation). Applications in the management of large-scale data centers and human-in-the-loop service systems are among our chief motivations. We quantify the degree to which information constraints reduce the size of the capacity region in general SPNs, and how such reduction depends on the amount of memories available. Using a novel metric, capacity factor, our main theorem characterizes the reduction in capacity region (under "optimal" policies) for all nondegenerate channels, and across almost all combinations of memory sizes. Notably, the theorem demonstrates, in substantial generality, that (1) the presence of a noisy channel always reduces capacity, (2) more memories for the allocation policy always improve capacity, and (3) more memories for the encoding policy have little to no effect on capacity. Finally, all of our positive (achievability) results are established through constructive, implementable policies. Our proof program involves the development of a host of new techniques by combining ideas from information theory, learning and queueing theory. We create a simple yet powerful generalization of the Max-Weight policy, in which individual Markov chains are selected dynamically, in a manner analogous to how schedules are used in a conventional Max-Weight policy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.