2 2 5The Brassica genus contains a diverse range of oilseed and vegetable crops important for human nutrition 1 . Crops of particular agricultural importance include three diploid species, Brassica rapa (AA), Brassica nigra (BB) and Brassica oleracea (CC), and three allopolyploid species, B. napus (AACC), B. juncea (AABB) and Brassica carinata (BBCC). The evolutionary relationships among these Brassica species are described by what is called the 'triangle of U' model 2 , which proposes how the genomes of the three ancestral Brassica species, B. rapa, B. nigra and Brassica oleracae, combined to give rise to the allopolyploid species of this genus. B. juncea formed by hybridization between the diploid ancestors of B. rapa and B. nigra, followed by spontaneous chromosome doubling. Subsequent diversifying selection then gave rise to the vegetable-and oil-use subvarieties of B. juncea. These subvarieties include vegetable and oilseed mustard in China, oilseed crops in India, canola crops in Canada and Australia, and condiment crops in Europe and other regions 3 . Cultivation of B. juncea began in China about 6,000 to 7,000 years ago 4 , and flourished in India from 2,300 BC onward 5 .The genomes of B. rapa, B. oleracea and their allopolyploid offspring B. napus have been published recently [6][7][8] , and are often used to explain genome evolution in angiosperms [6][7][8] . The genomes of all Brassica species underwent a lineage-specific whole-genome triplication 6,7,9 , followed by diploidization that involved substantial genome reshuffling and gene losses 6,10-13 . In general, plant genomes are typically repetitive, polyploid and heterozygous, which complicates genome assembly 14 . The short read lengths of next-generation sequencing hinder assembly through complex regions, and fragmented draft and reference genomes usually lack skewed (G+C)-content sequences and repetitive intergenic sequences. Furthermore, in allopolyploid species, homoeolog expression dominance or bias, and specifically differential homoelog gene expression, has often been detected, for instance in Gossypium [15][16][17] Triticum 18,19 and Arabidopsis 20,21 , but the role of this phenomenon in selection for phenotypic traits remains mechanistically mysterious 22 .We reported here the draft genomes of an allopolyploid, B. juncea var. tumida, constructed by de novo assembly using shotgun reads, single-molecule long reads (PacBio sequencing), genomic (optical) mapping (BioNano sequencing) and genetic mapping, serving to resolve complicated allopolyploid genomes. The multiuse allopolyploid B. juncea genome offers a distinctive model to study the underlying genomic basis for selection in breeding improvement. These findings place this work into the broader context of plant breeding, highlighting The Brassica genus encompasses three diploid and three allopolyploid genomes, but a clear understanding of the evolution of agriculturally important traits via polyploidy is lacking. We assembled an allopolyploid Brassica juncea genome by shotgun and single-m...
Strigolactones (SLs) are newly discovered plant hormones that regulate plant growth and development including shoot branching. They also stimulate symbiosis with arbuscular mycorrhizal fungi. Rice has at least three genes that are involved in SL synthesis (D10, D17/HTD1 and D27) and at least two genes that are involved in SL signaling (D3) and SL signaling or downstream metabolism (D14/D88/HTD2). We observed that mesocotyl elongation in darkness was greater in rice mutants defective in these genes than in the wild type. Exogenous application of a synthetic SL analog, GR24, rescued the phenotype of mesocotyl elongation in the SL-deficient mutants, d10-1, d17-1 and d27-1, in a dose-dependent manner, but did not affect mesocotyl lengths of the SL-insensitive mutants, d3-1 and d14-1. No significant differences in cell length were found between the d mutants and the wild type, except for some cells on the lower half of the d3-1 mesocotyl that were shortened. On the other hand, the number of cells in the mesocotyls was 3- to 6-fold greater in the d mutants than in the wild type. Treatment with GR24 reduced the number of cells in the d10-1 mesocotyl to the wild-type level, but did not affect the number of cells in the d3-1 and d14-1 mesocotyls. These findings indicate that SLs negatively regulate cell division, but not cell elongation, in the mesocotyl during germination and growth of rice in darkness.
Grafting is an important agricultural technique widely used to improve plant growth, yield, and adaptation to either biotic or abiotic stresses. However, the molecular mechanisms underlying grafting-induced physiological processes remain unclear. Watermelon (Citrullus lanatus L.) is an important horticultural crop worldwide. Grafting technique is commonly used in watermelon production for improving its tolerance to stresses, especially to the soil-borne fusarium wilt disease. In the present study, we used high-throughput sequencing to perform a genome-wide transcript analysis of scions from watermelon grafted onto bottle gourd and squash rootstocks. Our transcriptome and digital gene expression (DGE) profiling data provided insights into the molecular aspects of gene regulation in grafted watermelon. Compared with self-grafted watermelon, there were 787 and 3485 genes differentially expressed in watermelon grafted onto bottle gourd and squash rootstocks, respectively. These genes were associated with primary and secondary metabolism, hormone signaling, transcription factors, transporters, and response to stimuli. Grafting led to changes in expression of these genes, suggesting that they may play important roles in mediating the physiological processes of grafted seedlings. The potential roles of the grafting-responsive mRNAs in diverse biological and metabolic processes were discussed. Obviously, the data obtained in this study provide an excellent resource for unraveling the mechanisms of candidate genes function in diverse biological processes and in environmental adaptation in a graft system.
The elucidation of heat tolerance mechanisms is required to combat the challenges of global warming. This study aimed to determine the antioxidant enzyme responses to heat stress, at the enzymatic activity and gene expression levels, and to investigate the antioxidative alterations associated with heat tolerance in the stems and roots of squashes using three genotypes differing in heat tolerance. Plants of heat-tolerant “C. moschata”, thermolabile “C. maxima” and moderately heat-tolerant interspecific inbred line “Maxchata” genotypes were exposed to moderate (37 °C) and severe (42 °C) heat shocks. “C. moschata” exhibited comparatively little oxidative damage, with the lowest hydrogen peroxide (H2O2), superoxide (O2−) and malondialdehyde (MDA) contents in the roots compared to stems, followed by “Maxchata”. The enzyme activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT) and peroxidase (POD) were found to be increased with heat stress in tolerant genotypes. The significant inductions of FeSOD, MnSOD, APX2, CAT1 and CAT3 isoforms in tolerant genotypes suggested their participation in heat tolerance. The differential isoform patterns of SOD, APX and CAT between stems and roots also indicated their tissue specificity. Furthermore, despite the sequence similarity of the studied antioxidant genes among “C. maxima” and “Maxchata”, most of these genes were highly induced under heat stress in “Maxchata”, which contributed to its heat tolerance. This phenomenon also indicated the involvement of other unknown genetic and/or epigenetic factors in controlling the expression of these antioxidant genes in squashes, which demands further exploration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.