The concept of NFV appears to be a promising direction to save cellular network service providers from endlessly increasing capital investment, given the fast evolving mobile broadband communication techniques and unprecedented consumer demand for quality of service and quality of experience in mobile access. Meanwhile, given the deployment of NFV, the virtualized network functions and the physical hardware resources are still vulnerable to natural disasters and malicious attacks. We present in this article the first framework for reliability evaluation of NFV deployment and specific algorithms to efficiently determine the key set of physical or logical nodes there.
Transmission efficiency and robustness are two important properties of various networks and a number of optimization strategies have been proposed recently. We propose a scheme to enhance the network performance by adding a small fraction of links (or edges) to the currently existing network topology, and we present four edge addition strategies for adding edges efficiently. We aim at minimizing the maximum node betweenness of any node in the network to improve its transmission efficiency, and a number of experiments on both Barab asiÀAlbert (BA) and Erd€ osÀR enyi (ER) networks have confirmed the effectiveness of our four edge addition strategies. Also, we evaluate the effect of some other measure metrics such as average path length, average betweenness, robustness, and degree distribution. Our work is very valuable and helpful for service providers to optimize their network performance by adding a small fraction of edges or to make good network planning on the existing network topology incrementally.
With the advances in automobile industry and wireless communication technology, Vehicular Ad hoc Networks (VANETs) have attracted the attention of a large number of researchers. Trust management plays an important role in VANETs. However, it is still at the preliminary stage and the existing trust models cannot entirely conform to the characteristics of VANETs. This work proposes a novel Lightweight Self-Organized Trust (LSOT) model which contains trust certificate-based and recommendation-based trust evaluations. Both the supernodes and trusted third parties are not needed in our model. In addition, we comprehensively consider three factor weights to ease the collusion attack in trust certificate-based trust evaluation, and we utilize the testing interaction method to build and maintain the trust network and propose a maximum local trust (MLT) algorithm to identify trustworthy recommenders in recommendation-based trust evaluation. Furthermore, a fully distributed VANET scenario is deployed based on the famous Advogato dataset and a series of simulations and analysis are conducted. The results illustrate that our LSOT model significantly outperforms the excellent experience-based trust (EBT) and Lightweight Cross-domain Trust (LCT) models in terms of evaluation performance and robustness against the collusion attack.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.