BACKGROUND Plant pests mainly refers to insects and mites that harm crops and products. There are a wide variety of plant pests, with wide distribution, fast reproduction and large quantity, which directly causes serious losses to crops. Therefore, pest recognition is very important for crops to grow healthily, and this in turn affects crop yields and quality. At present, it is a great challenge to realize accurate and reliable pest identification. RESULTS In this study, we put forward a diagnostic system based on transfer learning for pest detection and recognition. This method is able to train and test ten types of pests and achieves an accuracy of 93.84%. We compared this transfer learning method with human experts and a traditional neural network model. Experimental results show that the performance of the proposed method is comparable to human experts and the traditional neural network. To verify the general adaptability of this model, we used our model to recognize two types of weeds: Sisymbrium sophia and Procumbent Speedwell, and achieved an accuracy of 98.92%. CONCLUSION The proposed method can provide evidence for the control of pests and weeds and the precise spraying of pesticides. Thus, it provides reliable technical support for precision agriculture. © 2019 Society of Chemical Industry
The motion trajectory of sea cucumbers reflects the behavior of sea cucumbers, and the behavior of sea cucumbers reflects the status of the feeding and individual health, which provides the important information for the culture, status detection and early disease warning. Different from the traditional manual observation and sensor-based automatic detection methods, this paper proposes a detection, location and analysis approach of behavior trajectory based on Faster R-CNN for sea cucumbers under the deep learning framework. The designed detection system consists of a RGB camera to collect the sea cucumbers' images and a corresponding sea cucumber identification software. The experimental results show that the proposed approach can accurately detect and locate sea cucumbers. According to the experimental results, the following conclusions are drawn: (1) Sea cucumbers have an adaptation time for the new environment. When sea cucumbers enter a new environment, the adaptation time is about 30 minutes. Sea cucumbers hardly move within 30 minutes and begin to move after about 30 minutes. (2) Sea cucumbers have the negative phototaxis and prefers to move in the shadows. (3) Sea cucumbers have a tendency to the edge. They like to move along the edge of the aquarium. When the sea cucumber is in the middle of the aquarium, the sea cucumber will look for the edge of the aquarium. (4) Sea cucumbers have unidirectional topotaxis. They move along the same direction with the initial motion direction. The proposed approach will be extended to the detection and behavioral analysis of the other marine organisms in the marine ranching. INDEX TERMS Artificial intelligence (AI), animal behavior, deep learning, object detection, faster R-CNN, marine ranching, sea cucumber.
Crop variety identification is an essential link in seed detection, phenotype collection and scientific breeding. This paper takes peanut as an example to explore a new method for crop variety identification. Peanut is a crucial oil crop and cash crop. The yield and quality of different peanut varieties are different, so it is necessary to identify and classify different peanut varieties. The traditional image processing method of peanut variety identification needs to extract many features, which has defects such as intense subjectivity and insufficient generalization ability. Based on the deep learning technology, this paper improved the deep convolutional neural network VGG16 and applied the improved VGG16 to the identification and classification task of 12 varieties of peanuts. Firstly, the peanut pod images of 12 varieties obtained by the scanner were preprocessed with gray-scale, binarization, and ROI extraction to form a peanut pod data set with a total of 3365 images of 12 varieties. A series of improvements have been made to VGG16. Remove the F6 and F7 fully connected layers of VGG16. Add Conv6 and Global Average Pooling Layer. The three convolutional layers of conv5 have changed into Depth Concatenation and add the Batch Normalization(BN) layers to the model. Besides, fine-tuning is carried out based on the improved VGG16. We adjusted the location of the BN layers. Adjust the number of filters for Conv6. Finally, the improved VGG16 model's training test results were compared with the other classic models, AlexNet, VGG16, GoogLeNet, ResNet18, ResNet50, SqueezeNet, DenseNet201 and MobileNetv2 verify its superiority. The average accuracy of the improved VGG16 model on the peanut pods test set was 96.7%, which was 8.9% higher than that of VGG16, and 1.6–12.3% higher than that of other classical models. Besides, supplementary experiments were carried out to prove the robustness and generality of the improved VGG16. The improved VGG16 was applied to the identification and classification of seven corn grain varieties with the same method and an average accuracy of 90.1% was achieved. The experimental results show that the improved VGG16 proposed in this paper can identify and classify peanut pods of different varieties, proving the feasibility of a convolutional neural network in variety identification and classification. The model proposed in this experiment has a positive significance for exploring other Crop variety identification and classification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.