Conventional method of calibrating optical trap stiffness is applicable for microspheres whose diameters range from hundreds of nanometer to several micrometers, but only have a slight advantage for those microspheres with diameters lager than five micrometers. To compensate this, we experimentally develop a time of flight method for measuring optical trap stiffness with larger microspheres. By comparing the optical trap stiffness of microspheres with different sizes and different materials at different laser powers, the time of flight method is confirmed to be more accurate and practical for microspheres larger than 5 μm; the result is of the same order of magnitude as the results of Brownian noise based analysis of 5 μm polystyrene bead. The results are higher than theoretical values due to the limited bandwidth of the camera. In comparison, the time of flight method is superior to other methods and does make sense in the fast calibration of optical trap stiffness on cell level. This method can be applied to optical traps with special field distributions. In the measurement of mechanical properties of cells, it can avoid using microspheres as force probe, thus providing a novel approach to the study of sophisticated single molecule process on the membrane of cells.
Laser driven fusion requires a high-degree uniformity in laser energy deposition in order to achieve the high-density compression required for sustaining a thermonuclear burn. Nowadays, uniform irradiation of capsule is still a key issue in direct drive inertial confinement fusion. The direct drive approach is to drive the target with laser light, by irradiating it with a large number of overlapping laser beams. In the direct drive scheme, the laser deposition pattern on the target can be decomposed into a series of Legendre spherical harmonic modes. The high mode (shorter wavelength) nonuniformity can lead to Rayleigh-Taylor instability, which may result in the failure of target compression. This nonuniformity can be suppressed by thermal conduction and beam conditioning technologies, such as continuous phase plate, smoothing by spectral dispersion and polarization smoothing. The low mode (longer wavelength) nonuniformity is related to the number, orientation and power balance of laser beams, which is hard to suppress by thermal conduction and beam conditioning technologies. Generally, the nonuniformity of laser irradiation on a directly driven target should be less than 1% (root mean square, RMS), to meet the requirement for symmetric compression. Several methods have been proposed to optimize the irradiation configuration in direct drive laser fusion, such as truncated icosahedron with beams at the 20 faces and 12 vertices of an icosaherdron, dodecahedron-based irradiation configurations, self-organizing electrodynamic method, etc. However, limited by the different parameters of incident beams, the irradiation uniformity is often not satisfactory. Therefore, it is necessary to find new way to improve the irradiation uniformity and make it more robust. According to the analytical result, the irradiation nonuniformity can be decomposed into the single beam factor and the geometric factor. Simulation results show that the single beam factor is mainly determined by the parameters of the incident beams, including beam pattern, beam width and beam wavelength. By analyzing and simulating the single beam factor with different incident beam parameters, and comparing the single beam factor with the geometric factor, a matching relationship between them is found by using the optimized parameters. Based on the simulation results, a method to optimize the incident beam parameters is proposed, which is applied to the 32-beam and 48-beam irradiation configurations. The results show that there is a set of optimal incident beam parameters which can attain the highest irradiation uniformity for a given configuration. The feasibility to achieve more uniform irradiation by optimizing the incident beam parameters is proved. When the single beam factor is optimized in a directly driven inertial confinement fusion system, the restrictions on the beam pointing error and power imbalance between incident beams can be relaxed. The results provide an effective method of designing and optimizing the uniform irradiation system of direct drive laser facility.
Time fiducial laser is an important timing marker for different diagnostic instruments in high energy density physics experiments. The probe laser in velocity interferometer system for any reflector (VISAR) is also vital for precise shock wave diagnosis in inertial confinement fusion (ICF) research. Here, time fiducial laser and VISAR probe laser are generated from one source in SG-III laser facility. After generated from a 1064 nm DFB laser, the laser is modulated by an amplitude modulator driven by a 10 GS/s arbitrary waveform generator. Using time division multiplexing technology, the ten-pulse time fiducial laser and the 20 ns pulse width VISAR probe laser are split by a 12 multiplexer and then the time fiducial and VISAR pulses will be selected individually by acoustic-optic modulators. Using this technology, the cost for the system can be reduced. The technologies adopted in the system also include pulse polarization stabilization, high stable Nd: YAG amplification, high precision thermally controlled frequency conversion, fiber coupling, and energy transmission. The fiber laser system is connected to the Nd: YAG rod amplifier stage with polarizing (PZ) fibers to maintain the polarization state. The output laser of Nd: YAG amplification stage is coupled with different kinds of energy transfer fibers to propagate enough energy and maintain the pulse shape for the time fiducial and VISAR probe laser. The input and output fibers are all coupled to the rod amplifiers with high precision and being easy to plug and play for users. Since the time fiducial and imaging VISAR laser system is far from the front end room and located in the target area, the system also uses an arbitrary waveform generator (AWG) to generate the shaped ten-pulse time fiducial laser and 20 ns VISAR laser. This AWG and the other three AWGs used for the main laser pulse of SG-III laser facility will be all synchronized by 10 GHz clock inputs, realizing the smaller than 7 ps (RMS) jitter between the main laser pulse, time fiducial laser and VISAR pulse. After amplification and frequency conversion, the time fiducial laser finally generates 12 beam 2 and 4-beam 3 laserbeams, providing important reference marks for different detectors in the ICF experiments and making it convenient for the analysis of multiple diagnostic data. The VISAR laser pulse is also amplified by the Nd: YAG amplifiers and frequency-converted to 532 nm green light by a thermally controlled LBO crystal, with output energy larger than 20 mJ. Finally, the 532 nm VISAR probe laser beam is coupled with a 1-mm core diameter fused silica optical fiber, and then propagates 30 meters to the imaging VISAR system. The VISAR probe laser has been used in many high energy density physics experiments. The shock wave loading and slowdown processes are measured. Function for measuring velocity history of shock wave front movement in different kinds of materials can be also added to the SG-III laser facility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.