In contrast to the importance of type II interferon-γ (IFN-γ) in control of toxoplasmosis, the role of type I IFN is less clear. We demonstrate here that TgIST, a secreted effector previously implicated in blocking type II IFN-γ signaling, also blocked IFN-β responses by inhibiting STAT1/STAT2-mediated transcription in infected cells. Consistent with a role for type I IFN in cell intrinsic control, ∆Tgist mutants were more susceptible to growth inhibition by murine and human macrophages activated with IFN-β. Additionally, type I IFN was important for production of IFN-γ by natural killer (NK) cells and recruitment of inflammatory monocytes at the site of infection. Mice lacking type I IFN receptors (Ifnar1−/−) showed increased mortality following infection with wild-type parasites and decreased virulence of ∆Tgist parasites was restored in Ifnar1−/− mice. The findings highlight the importance of type I IFN in control of toxoplasmosis and illuminate a parasite mechanism to counteract the effects of both type I and II IFN-mediated host defenses.
SummaryBacterial chemotaxis towards aromatic compounds has been frequently observed; however, knowledge of how bacteria sense aromatic compounds is limited. Comamonas testosteroni CNB-1 is able to grow on a range of aromatic compounds. This study investigated the chemotactic responses of CNB-1 to 10 aromatic compounds. We constructed a chemoreceptor-free, non-chemotactic mutant, CNB-1Δ20, by disruption of all 19 putative methyl-accepting chemotaxis proteins (MCPs) and the atypical chemoreceptor in strain CNB-1. Individual complementation revealed that a putative MCP (tagged MCP2201) was involved in triggering chemotaxis towards all 10 aromatic compounds. The recombinant sensory domain of MCP2201 did not bind to 3-or 4-hydroxybenzoate, protocatechuate, catechol, benzoate, vanillate and gentisate, but bound oxaloacetate, citrate, cisaconitate, isocitrate, α-ketoglutarate, succinate, fumarate and malate. The mutant CNB-1ΔpmdF that lost the ability to metabolize 4-hydroxybenzoate and protocatechuate also lost its chemotactic response to these compounds, suggesting that taxis towards aromatic compounds is metabolism-dependent. Based on the ligand profile, we proposed that MCP2201 triggers taxis towards aromatic compounds by sensing TCA cycle intermediates. Our hypothesis was further supported by the finding that introduction of the previously characterized pseudomonad chemoreceptor (McpS) for TCA cycle intermediates into CNB-1Δ20 likewise triggered chemotaxis towards aromatic compounds.
Background: Tumor microenvironments affect the progression of cancers. Results: We demonstrated that Th17 cells were accumulated in tumor tissues, and the tumor-derived MIF induced Th17 cell accumulation and had clinical relevance in NPC.
Conclusion:The cytokine MIF regulates intratumoral Th17 cell expansion and has prognostic value for NPC patients. Significance: The tumor microenvironment influences the clinical prognosis of NPC patients.
BackgroundCD8+ effector cells often have an antitumor function in patients with cancer. However, CD8+Foxp3+ regulatory T cells (Tcregs) and interleukin (IL)-17-producing CD8+ T cells (Tc17 cells) also derive from the CD8+ T cell lineage. Their role in the antitumor response remains largely unknown. In the present study, we aimed to investigate the distribution, characterization, and generation of CD8+ Tcregs and Tc17 cells in NPC patients.MethodsPeripheral blood and tumor biopsy tissues from 21 newly diagnosed patients with nasopharyngeal carcinoma (NPC) were collected, along with peripheral blood from 21 healthy donors. The biological characteristics of Tcregs and Tc17 cells from blood and tumor tissues were examined by intracellular staining, tetramer staining and fluorescence-activated cell sorting (FACS) analysis. The suppressive function of Tcregs was investigated using a proliferation assay that involved co-culture of sorted CD8+CD25+ T cells with naïve CD4+ T cells in vitro.ResultsWe observed an increased prevalence of Tcregs and Tc17 cells among tumor-infiltrating lymphocytes (TILs) and different distribution among peripheral blood mononuclear cells (PBMCs) in NPC patients. Cytokine profiles showed that the Tcregs expressed a high level of IL-10 and low level of transforming growth factor β, whereas Tc17 cells expressed a high level of tumor necrosis factor α. Interestingly, both subsets expressed a high level of interferon γ in TILs, and the Tcregs suppressed naïve CD4+ T cell proliferation by a cell contact-dependent mechanism in vitro. Moreover, we demonstrated the existence of Epstein-Barr virus latent membrane protein (LMP) 1 and LMP2 antigen-specific Tcregs in NPC.ConclusionsOur data provide new insights into the composition and function of CD8+ T-cell subsets in NPC, which may have an important influence on NPC immunotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.