We report on THz emission measurements and low temperature scanning laser imaging of Bi2Sr2CaCu2O8 intrinsic Josephson junction stacks. Coherent emission is observed at large dc input power, where a hot spot and a standing wave, formed in the "cold" part of the stack, coexist. By changing bias current and bath temperature, the emission frequency can be varied by more than 40%; the variation matches the Josephson-frequency variation with voltage. The linewidth of radiation is much smaller than expected from a purely cavity-induced synchronization. Thus, an additional mechanism seems to play a role. Some scenarios, related to the presence of the hot spot, are discussed.
At high enough input power in stacks of Bi2Sr2CaCu2O8 intrinsic Josephson junctions a hot spot (a region heated to above the superconducting transition temperature) coexists with regions still in the superconducting state. In the "cold" regions cavity resonances can occur, synchronizing the ac Josephson currents and giving rise to strong coherent THz emission. We investigate the interplay of hot spots and standing electromagnetic waves by low temperature scanning laser microscopy and THz emission measurements, using stacks of various geometries. For a rectangular and a arrowshaped structure we show that the standing wave can be turned on and off in various regions of the stack structure, depending on the hot spot position. We also report on standing wave and hot spot formation in a disk shaped mesa structure.
SUMMARYThe effect of high temperatures (above 25°C) on starch concentration and the morphology of starch granules in the grains of wheat (Triticum aestivum L.) were studied. Wheat plants of cultivars Yangmai 9 (weak-gluten) and Yangmai 12 (medium-gluten) were treated with high temperatures for 3 days at different times after anthesis. The results showed that the starch concentration of grains given a heat-shock treatment above 30°C were lower than those developing at normal temperature in both cultivars. High temperature lowered starch concentration due to the decrease of amylopectin. Under the same temperature, the effect of heat shock from 6 to 8 days after anthesis (DAA) was the greatest, whereas from 36 to 38 DAA the effect was the least. The effects of high temperatures after anthesis on starch-pasting properties were similar to those on starch concentration, especially after 35–40°C treatments. The size, shape and structure of starch granules in wheat grains (determined by electron microscopy) after heat shock were visibly different from the control. When given heat shock during development, the starch granules in mature wheat grains were ellipsoid in shape and bound loosely with a protein sheath in Yangmai 9, while they were damaged and compressed with fissures in Yangmai 12, indicating the differences in resistance to high temperature between cultivars. Ratios of large (type-A) and small (type-B) starch granules significantly decreased under heat shock, which limited the potential sink size for dry matter deposition in the grain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.