Using the method of meta-analysis to systematically evaluate the consistency of treatment schemes between Watson for Oncology (WFO) and Multidisciplinary Team (MDT), and to provide references for the practical application of artificial intelligence clinical decision-support system in cancer treatment. We systematically searched articles about the clinical applications of Watson for Oncology in the databases and conducted meta-analysis using RevMan 5.3 software. A total of 9 studies were identified, including 2463 patients. When the MDT is consistent with WFO at the ‘Recommended’ or the ‘For consideration’ level, the overall concordance rate is 81.52%. Among them, breast cancer was the highest and gastric cancer was the lowest. The concordance rate in stage I–III cancer is higher than that in stage IV, but the result of lung cancer is opposite (P < 0.05).Similar results were obtained when MDT was only consistent with WFO at the "recommended" level. Moreover, the consistency of estrogen and progesterone receptor negative breast cancer patients, colorectal cancer patients under 70 years old or ECOG 0, and small cell lung cancer patients is higher than that of estrogen and progesterone positive breast cancer patients, colorectal cancer patients over 70 years old or ECOG 1–2, and non-small cell lung cancer patients, with statistical significance (P < 0.05). Treatment recommendations made by WFO and MDT were highly concordant for cancer cases examined, but this system still needs further improvement. Owing to relatively small sample size of the included studies, more well-designed, and large sample size studies are still needed.
Artificial intelligence (AI) is a sort of new technical science which can simulate, extend and expand human intelligence by developing theories, methods and application systems. In the last five years, the application of AI in medical research has become a hot topic in modern science and technology. Gynecological malignant tumors involves a wide range of knowledge, and AI can play an important part in these aspects, such as medical image recognition, auxiliary diagnosis, drug research and development, treatment scheme formulation and other fields. The purpose of this paper is to describe the progress of AI in gynecological malignant tumors and discuss some problems in its application. It is believed that AI improves the efficiency of diagnosis, reduces the burden of clinicians, and improves the effect of treatment and prognosis. AI will play an irreplaceable role in the field of gynecological malignant oncology and will promote the development of medicine and further promote the transformation from traditional medicine to precision medicine and preventive medicine. However, there are also some problems in the application of AI in gynecologic malignant tumors. For example, AI, inseparable from human participation, still needs to be more “humanized”, and needs to further protect patients’ privacy and health, improve legal and insurance protection, and further improve according to local ethnic conditions and national conditions. However, it is believed that with the continuous development of AI, especially ensemble classifier, and deep learning will have a profound influence on the future of medical technology, which is a powerful driving force for future medical innovation and reform.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.