The recently demonstrated approach of grafting n-type GaN with p-type Si or GaAs, by employing ultrathin Al2O3 at the interface, has shown the feasibility to overcome the poor p-type doping challenge of GaN. However, the surface band-bending of GaN that could be influenced by the Al2O3 has been unknown. In this work, the band-bending of c-plane, Ga-face GaN with ultrathin Al2O3 deposition at the surface of GaN was studied using X-ray photoelectron spectroscopy (XPS). The study shows that the Al2O3 can help suppress the upward band-bending of the c-plane, Ga-face GaN with a monotonic reduction trend from 0.48 eV down to 0.12 eV as the number of Al2O3 deposition cycles increases from 0 to 20. The study further shows that the band-bending can be mostly recovered after removing the Al2O3 layer, concurring that the introduction of ultrathin Al2O3 is the main reason for the surface band-bending modulation.
Wearable sensors to monitor human sweat loss are important for realtime health monitoring, requiring electrically conductive, mechanically flexible fabrics as working electrodes. Here, a textile-based sweat monitor was fabricated by screen printing of carbon black and recycled sericin on cotton fabrics. The obtained fabric with excellent flexibility, good hydrophilicity (86°), and proper resistivity (61.7 Ω/ cm 2 ) can be used as a working electrode for a wearable sweat monitor. A wearable sweat monitor is highly sensitive (42.7% in acidic sweat), flexible, and can be washed (99.1% retention after 30 washes). This work offers a promising approach for the fabrication of wearable sensors and promotes the widespread applications of personalized health-monitoring devices.
Ultrathin oxides (UOs) and ultrathin nitrides (UNs) play a crucial role in forming lattice-mismatched semiconductor heterostructures that are fabricated by using semiconducting grafting approach. The grafting approach has shown its great potential to realize GaN-based heterojunction bipolar transistors by fulfilling the missing high-performance p-type nitrides with other p-type semiconductors. A handful of UO and UN dielectrics readily available by atomic layer deposition (ALD) satisfy the requirements of double-sided surface passivation and quantum tunneling for semiconductor grafting. Due to the states existing between the UO or UN conduction band and that of the GaN, the ALD deposited UO or UN layer can generate significant effects on the surface band-bending of GaN. Understanding the band parameters of the interface between UO or UN and c-plane Ga-face GaN can guide the selection of interfacial dielectrics for grafted GaN-based devices. In this study, we performed x-ray photoelectron spectroscopy measurements to obtain the band-bending properties on c-plane, Ga-face GaN samples coated by different ALD cycles of ultrathin-HfO2 or ultrathin AlN. The valence band spectra of GaN coated with ultrathin-ALD–Al2O3, ALD–HfO2, or PEALD–AlN/ALD–Al2O3 were further analyzed to calculate the valence and conduction band offsets between the ALD dielectrics and the Ga-face GaN under different thicknesses and post-deposition annealing conditions of the dielectrics.
Tracking the concentration of biomarkers in biofluids can provide crucial information about health status. However, the complexity and nonideal form factors of conventional digital wireless schemes impose challenges in realizing biointegrated, lightweight, and miniaturized sensors. Inspired by the working principle of tuning circuits in radio frequency electronics, this study reports a class of battery-free wireless biochemical sensors: In a resonance circuit, the coupling between a sensing interface and an inductor-capacitor oscillator through a pair of varactor diodes converts a change in electric potential into a modulation in capacitance, resulting in a quantifiable shift of the resonance circuit. Proper design of sensing interfaces with biorecognition elements enables the detection of various biomarkers, including ions, neurotransmitters, and metabolites. Demonstrations of “smart accessories” and miniaturized probes suggest the broad utility of this circuit model. The design concepts and sensing strategies provide a realistic pathway to building biointegrated electronics for wireless biochemical sensing.
Recent demonstrations of grafted p-n junctions combining n-type GaN with p-type semiconductors have shown great potential in achieving lattice-mismatch epitaxy-like heterostructures. Ultrathin dielectrics deposited by atomic layer deposition (ALD) serve both as a double-sided surface passivation layer and a quantum tunneling layer. On the other hand, with excellent thermal, mechanical, and electrical properties, ZrO2 serves as a high-k gate dielectric material in multiple applications, which is also of potential interest to applications in grafted GaN-based heterostructures. In this sense, understanding the interfacial band parameters of ultrathin ALD-ZrO2 is of great importance. In this work, the band-bending of Ga-polar GaN with ultrathin ALD-ZrO2 was studied by x-ray photoelectron spectroscopy (XPS). This study demonstrated that ZrO2 can effectively suppress upward band-bending from 0.88 to 0.48 eV at five deposition cycles. The bandgap values of ALD-ZrO2 at different thicknesses were also carefully studied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.