Optical vortex beam with fractional orbital angular momentum (OAM) has great potential to increase the capacity of optical communication and information processing in classical and quantum regimes. However, atmospheric turbulence (AT) in free space distorts the helical phase-front of vortex beams and causes the mode diffusion, seriously hindering the practical application. Herein, using a convolutional neural network approach with an improved residual neural network architecture, we overcome the hurdle to give the accurate recognition of the fractional OAM in the AT. As demonstrated on the petal interference patterns, a type of hybrid beams carrying double OAM modes is utilized to provide two controllable degrees of freedom for greater recognition of more subtle OAM modes, e.g., the fractional topological charge number l and the angular ratio n. Our studies show that with various l and n, the recognition accuracy of OAM over 20 000 images is as high as 85.30% even under the strong AT parameter (Cn2 = 5 × 10−14 m−2/3) and the long propagation distance (z = 1500 m). Our findings represent a remarkable achievement toward highly accurate recognition of fractional OAM with broad bandwidth in the atmospheric environment, expanding the applications for the general interest of machine learning based OAM optical communication.
Root growth and development depend on continuous cell division and differentiation in root tips. In these processes, reactive oxygen species (ROS) play a critical role as signaling molecules. However, few ROS signaling regulators have been identified. In this study, we found knockdown of a syntaxin gene, SYNTAXIN OF PLANTS81 in Arabidopsis thaliana (AtSYP81) resulted in severe reduction in root meristem activity and disruption of root stem cell niche (SCN) identity. Subsequently, we found AtSYP81 was highly expressed in roots and localized on the endoplasmic reticulum (ER). Interestingly, the reduced expression of AtSYP81 conferred decreased number of peroxisomes in root meristem cells, raising a possibility that AtSYP81 regulates root development through peroxisome-mediated ROS production. Further transcriptome analysis revealed that class III peroxidases, which are responsible for intracellular ROS homeostasis, showed significantly changed expression in the atsyp81 mutants and AtSYP81 overexpression lines, adding evidence of the regulatory role of AtSYP81 in ROS signaling. Accordingly, rescuing the decreased ROS level via applying ROS donors effectively restored the defects in root meristem activity and SCN identity in the atsyp81 mutants. APETALA2 (AP2) transcription factors PLETHORA1 and 2 (PLT1 and PLT2) were then established as the downstream effectors in this pathway, while potential crosstalk between ROS signaling and auxin signaling was also indicated. Taken together, our findings suggest that AtSYP81 regulates root meristem activity and maintains root SCN identity by controlling peroxisome- and peroxidase-mediated ROS homeostasis, thus both broadening and deepening our understanding of biological roles of SNARE proteins and ROS signaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.