Abstract-The effects of the surface slopes joint probability density, the shadowing function, the skewness of sea waves and the curvature of the surface on the backscattering from the ocean surface are discussed and an improved two-scale model modified by these four aspects is used to calculate the backscattering coefficient of the dynamic ocean surface. In order to deal with the surface skewness driven by wind, a new complementary term derived from the small perturbation method is included in the improved model, in which the Fourier transform of the third-order cumulant function, surface bispectrum, is employed. On this basis, with the oceanic whitecap coverage taken into account, a composite model for predicting the ocean surface backscattering coefficient is constructed tentatively, which incorporates the volume scattering into the total one. Finally, with the vector radiative transfer (VRT) theory employed, numerical illustrations are carried out for the backscattering coefficients versus wind speed, incidence angle and azimuth angle, respectively. The predictions of the composite model are verified in K u -and K a -bands through the comparison of numerical results with many sets of measured data and the aircraft measurement experiment carried out in ZHOUSHAN sea area also supports this model.
Abstract-A comprehensive facet model for bistatic synthetic aperture radar (Bis-SAR) imagery of dynamic ocean scene is presented in this paper. An efficient facet scattering model is developed to calculate the radar cross section (RCS) of the ocean surface for Bis-SAR firstly. Further more, this facet model is combined with a bistatic velocity bunching (V B) modulation of long ocean waves to obtain the Bis-SAR intensity expression in image plane of ocean scene. The displacement of the scatter elements in the image plane and the degradation of radar resolution in azimuth direction are quantificationally analyzed. Finally, Bis-SAR imagery simulations of ocean surface are illustrated, proving the validity and practicability of the presented algorithms.
The signal reconstruction quality has become a critical factor in compressed sensing at present. This paper proposes a matching pursuit algorithm for backtracking regularization based on energy sorting. This algorithm uses energy sorting for secondary atom screening to delete individual wrong atoms through the regularized orthogonal matching pursuit (ROMP) algorithm backtracking. The support set is continuously updated and expanded during each iteration. While the signal energy distribution is not uniform, or the energy distribution is in an extreme state, the reconstructive performance of the ROMP algorithm becomes unstable if the maximum energy is still taken as the selection criterion. The proposed method for the regularized orthogonal matching pursuit algorithm can be adopted to improve those drawbacks in signal reconstruction due to its high reconstruction efficiency. The experimental results show that the algorithm has a proper reconstruction.
Abstract-The Doppler spectral characteristics of electromagnetic backscattered echoes from dynamic nonlinear surfaces of finite-depth sea is investigated with the second-order small-slope approximation (SSA-II). The revised nonlinear hydrodynamic choppy wave model (CWM) combining with an experiment-verified shoaling coefficient is utilized to model the finite-depth sea wave profiles, and the simulated surfaces of finite-depth sea show steeper crests and more flat troughs as depth decreases. First, Comparison of the Doppler spectra for linear sea surfaces and nonlinear choppy sea surfaces shows that nonlinear hydrodynamic effect greatly enhances the Doppler shift and the Doppler spectrum bandwidth, and the predicted results agree well with the rigorous numerical model data. The Doppler spectra of backscattered echoes from finite-depth sea with different depths are further evaluated. At small incident angles, the Doppler shifts and the spectra bandwidths are much lower for shallower sea, and the opposite situation can be gradually observed for increased incident angles. This indicates that the nonlinear wave-wave interactions among waves occur more frequently in finite-depth sea and the long waves will be suppressed while shorter wind waves will be boosted in shallower water. Moreover, the dependence of the Doppler spectral characteristics on polarization is also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.