Hardware in the Loop (HIL) semi-physical real-time simulation can shorten the research period and complete the harsh working condition test, which is difficult to be carried out on the physical platform. Taking the off-grid Doubly Fed Induction Generator (DFIG) wind power system as the research object, this paper proposes the bottom modelling method of HIL real-time simulation. Using the Hardware Description Language VERILOG, the bottom real-time models of DFIG, converter and load are designed on Field Programmable Gate Array (FPGA), connected with the real controller, and the HIL real-time simulation platform is constructed. The experiments of conventional working conditions and unbalance load are carried out on the HIL platform and the physical platform. The operation speed of the HIL platform reaches 0.48μs. Compared with the physical platform, the error of HIL platform is between 1.17 ~ 3.29% under various working conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.