TensorCircuit is an open source quantum circuit simulator based on tensor network contraction, designed for speed, flexibility and code efficiency. Written purely in Python, and built on top of industry-standard machine learning frameworks, TensorCircuit supports automatic differentiation, just-in-time compilation, vectorized parallelism and hardware acceleration. These features allow TensorCircuit to simulate larger and more complex quantum circuits than existing simulators, and are especially suited to variational algorithms based on parameterized quantum circuits. TensorCircuit enables orders of magnitude speedup for various quantum simulation tasks compared to other common quantum software, and can simulate up to 600 qubits with moderate circuit depth and low-dimensional connectivity. With its time and space efficiency, flexible and extensible architecture and compact, user-friendly API, TensorCircuit has been built to facilitate the design, simulation and analysis of quantum algorithms in the Noisy Intermediate-Scale Quantum (NISQ) era.
In this note, we report the back propagation formula for complex valued singular value decompositions (SVD). This formula is an important ingredient for a complete automatic differentiation(AD) infrastructure in terms of complex numbers, and it is also the key to understand and utilize AD in tensor networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.