Using multi-core photonic crystal fiber (PCF) has advantages of large-mode-area that can support high beam intensity and disperse heat. However, only when the beam profile in far-field and the focal point of in-phase super mode is Gaussian-shaped, the energy can be more concentrated as compared with other shapes. And this beam profile feature limits the applications of multi-core PCF.With the development of optics, there is a practical solution to improve the beam profile of multi-core PCF in which a Kagome fiber is used. This solution is to couple the in-phase super mode source (obtained from multi-core PCF) into Kagome fiber to achieve the beam combination of multi-core photonic crystal fiber, i. e. the beam profile remains to be Gaussian-shaped at any location in the optical field. The Kagome fibers have a novel hollow structure and thus will show some new properties, such as broad optical transmission bands with relatively low loss, no detectable surface modes, and high confinement of light at the core, and these features are suitable for beam combination.In this paper, a Ti: sapphire femtosecond pulsed fiber oscillator, with its center wavelength of 800 nm and output power of 550 mW, is used to pump a piece of seven-core nonlinear PCF, with an efficiency of 19%. EFL of the coupling lens is 18.40 mm and the NA is 0.15. Then the in-phase super mode source can be obtained from the 15 m multi-core PCF, with a broadband spectrum from 700 to 1050 nm. The beam profile of farfield and the focal point of in-phase super mode is Gaussian-shaped and there is a seven-core-shaped pattern at nearfield and other locations in the optical field. In order to combine the beams of multi-core fiber, the in-phase super mode source is coupled into a piece of Kagome fiber, 10 cm long, by using the coupling lens whose EFL is 13.86 mm. Its coupling efficiency is 71% and the output beam profile remains to be Gaussian-shaped at any locations in the optical field; this means that there is no seven-core-shaped pattern. It also transmits broadband spectrum with low loss. Moreover, this experiment also proves that the solution can be used for different multi-core PCFs and can have a higher coupling efficiency, 80%. Thus a reference can be given for high power applications of multi-core PCF, and inspiration may be given to some other frontier fields in fiber optics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.