Background Airborne particulate matter (PM) may induce epigenetic changes that potentially lead to chronic diseases. Histone modifications regulate gene expression by influencing chromatin structure that can change gene expression status. We evaluated whether traffic-derived PM exposure is associated with four types of environmentally inducible global histone H3 modifications. Methods The Beijing Truck Driver Air Pollution Study included 60 truck drivers and 60 office workers examined twice, 1–2 weeks apart, for ambient PM10 (both day-of and 14-day average exposures), personal PM2.5, black carbon (BC), and elemental components (potassium, sulfur, iron, silicon, aluminum, zinc, calcium, and titanium). For both PM10 measures, we obtained hourly ambient PM10 data for the study period from the Beijing Municipal Environmental Bureau’s 27 representatively distributed monitoring stations. We then calculated a 24 h average for each examination day and a moving average of ambient PM10 measured in the 14 days prior to each examination. Examinations measured global levels of H3 lysine 9 acetylation (H3K9ac), H3 lysine 9 tri-methylation (H3K9me3), H3 lysine 27 tri-methylation (H3K27me3), and H3 lysine 36 tri-methylation (H3K36me3) in blood leukocytes collected after work. We used adjusted linear mixed-effect models to examine percent changes in histone modifications per each μg/m3 increase in PM exposure. Results In all participants each μg/m3 increase in 14-day average ambient PM10 exposure was associated with lower H3K27me3 (β=−1.1%, 95% CI: −1.6, −0.6) and H3K36me3 levels (β=−0.8%, 95% CI: −1.4, −0.1). Occupation-stratified analyses showed associations between BC and both H3K9ac and H3K36me3 that were stronger in office workers (β=4.6%, 95% CI: 0.9, 8.4; and β=4.1%, 95% CI: 1.3; 7.0 respectively) than in truck drivers (β=0.1%, 95% CI: −1.3, 1.5; and β=0.9%, 95% CI: −0.9, 2.7, respectively; both pinteraction < 0.05). Sex-stratified analyses showed associations between examination-day PM10 and H3K9ac, and between BC and H3K9me3, were stronger in women (β=10.7%, 95% CI: 5.4, 16.2; and β=7.5%, 95% CI: 1.2, 14.2, respectively) than in men (β=1.4%, 95% CI: −0.9, 3.7; and β=0.9%, 95% CI: −0.9, 2.7, respectively; both pinteraction < 0.05). We observed no associations between personal PM2.5 or elemental components and histone modifications. Conclusions Our results suggest a possible role of global histone H3 modifications in effects of traffic-derived PM exposures, particularly BC exposure. Future studies should assess the roles of these modifications in human diseases and as potential mediators of air pollution-induced disease, in particular BC exposure.
Background Neonatal adiposity has many determinants and may be a risk factor for future obesity. Epigenetic regulation of metabolically important genes are a potential contributor. Objective To determine whether methylation changes in the LEP gene in cord blood DNA are impacted by the maternal environment or affect neonatal adiposity measures. Methods A cross-sectional study of 114 full-term neonates born to healthy mothers with normal glucose tolerance was performed. Cord blood was assayed for leptin and genomewide DNA methylation profiles via the Illumina 450K platform. Neonatal body composition was measured by air displacement plethysmography. Multivariate linear regression models and semi-partial correlation coefficients were used to analyze associations. False discovery rate (FDR) was estimated to account for multiple comparisons. Results Maternal pre-pregnancy BMI was associated with decreased methylation at 5 CpG sites near the LEP transcription start site in an adjusted model (FDR<0.022 for each site). The association between maternal BMI and cord blood leptin approached significance (r=0.18, p=0.054). Cord blood leptin was positively correlated with neonatal adiposity measures including birth weight (r=0.45, p < 0.001), fat mass (r=0.47, p < 0.001), and percent body fat (r=0.44, p < 0.001). Conclusions Maternal pre-pregnancy BMI is strongly associated with decreased cord blood LEP gene methylation and may mediate the well-known association between maternal pre-pregnancy BMI and neonatal adiposity.
Visualization of SLN in preoperative lymphoscintigraphy predicted the successful SLN identification. However, it was less informative for the location of SLN during operation. Considering the complexity, time consumed, and cost, lymphoscintigraphy should at present be undergone for investigation purposes only.
BackgroundRH1 is one of the most clinically important blood group antigens in the field of transfusion and in the prevention of fetal incompatibility. The molecular analysis and characterization of serologic weak D phenotypes is essential to ensuring transfusion safety.MethodsBlood samples from a northeastern Chinese population were randomly screened for a serologic weak D phenotype. The nucleotide sequences of all 10 exons, adjacent flanking intronic regions, and partial 5′ and 3′ untranslated regions (UTRs) were detected for RHD genes. Predicted deleterious structural changes in missense mutations of serologicl weak D phenotypes were analyzed using SIFT, PROVEAN and PolyPhen2 software. The protein structure of serologic weak D phenotypes was predicted using Swiss-PdbViewer 4.0.1.ResultsA serologic weak D phenotype was found in 45 individuals (0.03%) among 132,479 blood donors. Seventeen distinct RHD mutation alleles were detected, with 11 weak D, four partial D and two DEL alleles. Further analyses resulted in the identification of two novel alleles (RHD weak D 1102A and 399C). The prediction of a three-dimensional structure showed that the protein conformation was disrupted in 16 serologic weak D phenotypes.ConclusionsTwo novel and 15 rare RHD alleles were identified. Weak D type 15, DVI Type 3, and RHD1227A were the most prevalent D variant alleles in a northeastern Chinese population. Although the frequencies of the D variant alleles presented herein were low, their phenotypic and genotypic descriptions add to the repertoire of reported RHD alleles. Bioinformatics analysis on RhD protein can give us more interpretation of missense variants of RHD gene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.