Dynamic environmental changes such as extreme temperature, water scarcity and high salinity affect plant growth, survival, and reproduction. Plants have evolved sophisticated regulatory mechanisms to adapt to these unfavorable conditions, many of which interface with plant hormone signaling pathways. Abiotic stresses alter the production and distribution of phytohormones that in turn mediate stress responses at least in part through hormone- and stress-responsive transcription factors. Among these, the APETALA2/ETHYLENE RESPONSIVE FACTOR (AP2/ERF) family transcription factors (AP2/ERFs) have emerged as key regulators of various stress responses, in which they also respond to hormones with improved plant survival during stress conditions. Apart from participation in specific stresses, AP2/ERFs are involved in a wide range of stress tolerance, enabling them to form an interconnected stress regulatory network. Additionally, many AP2/ERFs respond to the plant hormones abscisic acid (ABA) and ethylene (ET) to help activate ABA and ET dependent and independent stress-responsive genes. While some AP2/ERFs are implicated in growth and developmental processes mediated by gibberellins (GAs), cytokinins (CTK), and brassinosteroids (BRs). The involvement of AP2/ERFs in hormone signaling adds the complexity of stress regulatory network. In this review, we summarize recent studies on AP2/ERF transcription factors in hormonal and abiotic stress responses with an emphasis on selected family members in Arabidopsis . In addition, we leverage publically available Arabidopsis gene networks and transcriptome data to investigate AP2/ERF regulatory networks, providing context and important clues about the roles of diverse AP2/ERFs in controlling hormone and stress responses.
Brassinosteroids (BRs) regulate plant growth and stress responses via the BES1/BZR1 family of transcription factors, which regulate the expression of thousands of downstream genes. BRs are involved in the response to drought, however the mechanistic understanding of interactions between BR signalling and drought response remains to be established. Here we show that transcription factor RD26 mediates crosstalk between drought and BR signalling. When overexpressed, BES1 target gene RD26 can inhibit BR-regulated growth. Global gene expression studies suggest that RD26 can act antagonistically to BR to regulate the expression of a subset of BES1-regulated genes, thereby inhibiting BR function. We show that RD26 can interact with BES1 protein and antagonize BES1 transcriptional activity on BR-regulated genes and that BR signalling can also repress expression of RD26 and its homologues and inhibit drought responses. Our results thus reveal a mechanism coordinating plant growth and drought tolerance.
APETALA2/ETHYLENE RESPONSIVE FACTOR (AP2/ERF) family transcription factors have well-documented functions in stress responses, but their roles in brassinosteroid (BR)-regulated growth and stress responses have not been established. Here, we show that the Arabidopsis (Arabidopsis thaliana) stress-inducible AP2/ERF transcription factor TINY inhibits BRregulated growth while promoting drought responses. TINY-overexpressing plants have stunted growth, increased sensitivity to BR biosynthesis inhibitors, and compromised BR-responsive gene expression. By contrast, tiny tiny2 tiny3 triple mutants have increased BR-regulated growth and BR-responsive gene expression. TINY positively regulates drought responses by activating drought-responsive genes and promoting abscisic acid-mediated stomatal closure. Global gene expression studies revealed that TINY and BRs have opposite effects on plant growth and stress response genes. TINY interacts with and antagonizes BRASSINOSTERIOID INSENSITIVE1-ETHYL METHANESULFONATE SUPRESSOR1 (BES1) in the regulation of these genes. Glycogen synthase kinase 3-like protein kinase BR-INSENSITIVE2 (BIN2), a negative regulator in the BR pathway, phosphorylates and stabilizes TINY, providing a mechanism for BR-mediated downregulation of TINY to prevent activation of stress responses under optimal growth conditions. Taken together, our results demonstrate that BR signaling negatively regulates TINY through BIN2 phosphorylation and TINY positively regulates drought responses, as well as inhibiting BR-mediated growth through TINY-BES1 antagonistic interactions. Our results thus provide insight into the coordination of BR-regulated growth and drought responses.
Plant steroid hormones brassinosteroids (BRs) regulate plant growth and development at many different levels. Recent research has revealed that stress-responsive NAC (petunia NAM and Arabidopsis ATAF1, ATAF2, and CUC2) transcription factor RD26 is regulated by BR signaling and antagonizes BES1 in the interaction between growth and drought stress signaling. However, the upstream signaling transduction components that activate RD26 during drought are still unknown. Here, we demonstrate that the function of RD26 is modulated by GSK3like kinase BIN2 and protein phosphatase 2C ABI1. We show that ABI1, a negative regulator in abscisic acid (ABA) signaling, dephosphorylates and destabilizes BIN2 to inhibit BIN2 kinase activity. RD26 protein is stabilized by ABA and dehydration in a BIN2-dependent manner. BIN2 directly interacts and phosphorylates RD26 in vitro and in vivo. BIN2 phosphorylation of RD26 is required for RD26 transcriptional activation on drought-responsive genes. RD26 overexpression suppressed the brassinazole (BRZ) insensitivity of BIN2 triple mutant bin2 bil1 bil2, and BIN2 function is required for the drought tolerance of RD26 overexpression plants. Taken together, our data suggest a drought signaling mechanism in which drought stress relieves ABI1 inhibition of BIN2, allowing BIN2 activation. Sequentially, BIN2 phosphorylates and stabilizes RD26 to promote drought stress response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.