The mechanisms underlying the pathogenesis of steatosis and insulin resistance in nonalcoholic fatty liver disease remain elusive. Increased phosphorylation of hepatic p38 has long been noticed in fatty liver; however, whether the activation of hepatic p38 is a cause or consequence of liver steatosis is unclear. Here, we demonstrate that hepatic p38 activation by MKK6 overexpression in the liver of mice induces severe liver steatosis, reduces fat mass, and elevates circulating fatty acid levels in a hepatic p38α- and FGF21-dependent manner. Mechanistically, through increasing FGF21 production from liver, hepatic p38 activation increases the influx of fatty acids from adipose tissue to liver, leading to hepatic ectopic lipid accumulation and insulin resistance. Although hepatic p38 activation exhibits favorable effects in peripheral tissues, it impairs the hepatic FGF21 action by facilitating the ubiquitination and degradation of FGF21 receptor cofactor β-Klotho. Consistently, we show that when p38 phosphorylation and FGF21 expression are increased, β-Klotho protein levels are decreased in the fatty liver of both mice and patients. In conclusion, our study reveals previously undescribed effects of hepatic p38 activation on systemic metabolism and provides new insights into the roles of hepatic p38α, FGF21, and β-Klotho in the pathogenesis of nonalcoholic fatty liver disease.
Previous studies have indicated an association of fat mass and obesity-associated (FTO) with nonalcoholic fatty liver disease (NAFLD), the most common chronic liver disease worldwide. This study aimed to decipher the complex role of FTO in hepatic lipid metabolism. We found that a decrease in N6-methyladenosine (m6A) RNA methylation in the liver of mice fed with high-fat diet (HFD) was accompanied by an increase in FTO expression. Overexpression of FTO in the liver promoted triglyceride accumulation by upregulating the expression of lipogenic genes. Mechanistical studies revealed that FTO could stabilize the mRNAs of sterol regulatory element binding transcription factor 1 (SREBF1) and carbohydrate responsive element binding protein (ChREBP), two master lipogenic transcription factors, by demethylating m6A sites. Knockdown of either SREBF1 or ChREBP attenuated the lipogenic effect of FTO, suggesting that they are bona fide effectors for FTO in regulating lipogenesis. Insulin could stimulate FTO transcription through a mechanism involving the action of intranuclear insulin receptor beta, while knockdown of FTO abrogated the lipogenic effect of insulin. Inhibition of FTO by entacapone decreased the expression of SREBF1, ChREBP, and downstream lipogenic genes, ameliorating liver steatosis in HFD-fed mice. Thus, our study established a critical role of FTO in both the insulin-regulated hepatic lipogenesis and the pathogenesis of NAFLD and provided a potential strategy for treating NAFLD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.