The therapeutic efficacy of chemotherapy is dramatically hindered by multidrug resistance (MDR), which is induced by the overexpression of P-glycoprotein (P-gp). The codelivery of an antitumor drug and siRNA is an effective strategy recently applied in overcoming P-gp-related MDR. In this study, a multifunctional drug delivery system with both pH-sensitive feature and active targetability was designed, in which MDR1-siRNA and DOX were successfully loaded. The resulting carrier EphA10 antibody-conjugated pH-sensitive doxorubicin (DOX), MDR1-siRNA coloading lipoplexes (shortened as DOX + siRNA/ePL) with high serum stability had favorable physicochemical properties. DOX + siRNA/ePL exhibited an incremental cellular uptake, enhanced P-gp downregulation efficacy, as well as a better cell cytotoxicity in human breast cancer cell line/adriamycin drug-resistant (MCF-7/ADR) cells. The results of the intracellular colocalization study indicated that DOX + siRNA/ePL possessed the ability for pH-responsive rapid endosomal escape in a time-dependent characteristic. Meanwhile, the in vivo antitumor activities suggested that DOX + siRNA/ePL could prolong the circulation time as well as specifically accumulate in the tumor cells via receptor-mediated endocytosis after intravenous administration into the blood system. The histological study further demonstrated that DOX + siRNA/ePL could inhibit the proliferation, induce apoptosis effect, and downregulate the P-gp expression in vivo. Altogether, DOX + siRNA/ePL was expected to be a suitable codelivery system for overcoming the MDR effect.
Therapeutic delivery of small interfering RNA (siRNA) is a major challenge that limits its potential clinical application. Here, a pH-sensitive cholesterol–Schiff base–polyethylene glycol (Chol–SIB–PEG)-modified cationic liposome–siRNA complex, conjugated with the recombinant humanized anti-EphA10 antibody (Eph), was developed as an efficient nonviral siRNA delivery system. Chol–SIB–PEG was successfully synthesized and confirmed with FTIR and 1 H-NMR. An Eph–PEG–SIB–Chol-modified liposome–siRNA complex (EPSLR) was prepared and characterized by size, zeta potential, gel retardation, and encapsulation efficiency. Electrophoresis results showed that EPSLR was resistant to heparin replacement and protected siRNA from fetal bovine serum digestion. EPSLR exhibited only minor cytotoxicity in MCF-7/ADR cells. The results of flow cytometry and confocal laser scanning microscopy suggested that EPSLR enhanced siRNA transfection in MCF-7/ADR cells. Intracellular distribution experiment revealed that EPSLR could escape from the endo-lysosomal organelle and release siRNA into cytoplasm at 4 hours posttransfection. Western blot experiment demonstrated that EPSLR was able to significantly reduce the levels of MDR1 protein in MCF-7/ADR cells. The in vivo study of DIR-labeled complexes in mice bearing MCF-7/ADR tumor indicated that EPSLR could reach the tumor site rather than other organs more effectively. All these results demonstrate that EPSLR has much potential for effective siRNA delivery and may facilitate its therapeutic application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.