Developing low-cost, durable, and highly catalytic counter electrode (CE) materials based on earth-abundant elements is essential for dye-sensitized solar cells (DSSCs). In this study, we report a highly active nanostructured compositional material, TiOPC, which contains titanium, oxygen, phosphorus, and carbon, for efficient CE in I/I electrolyte. The TiOPC nanocomposites are prepared from carbon thermal transformation of TiPO in an atmosphere of nitrogen at high temperature, and their catalytic performance is regulated by changing the carbon content in the nanocomposites. The TiOPC with appropriate 24.6 wt % carbon and porous structure exhibits an enhanced electrocatalytic activity in the reduction of I, providing a short-circuit current density of 16.64 mA cm, an open-circuit potential of 0.78 V, and an energy conversion efficiency of 8.65%. The photovoltaic performance of TiOPC CE-based DSSC is even superior to that of a Pt CE-based cell (13.80 mA cm, 0.79 V, and 6.66%). The enhanced catalytic activity of TiOPC is attributed to the presence of predominant Ti-O-P-C structure along with the continuous conductive carbon network and the porous structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.