The objective of this systematic review was to identify the effectiveness of percutaneous endoscopic lumbar discectomy (PELD) in the treatment of recurrent lumbar disc herniation (rLDH) and to present its indications and techniques. We conducted a comprehensive search in MEDLINE, EMBASE, PubMed, Web of Science and Cochrane databases, searching for relevant studies of managing rLDH with PELD up to July 2015. Only papers published in English were included. Two review authors independently selected the studies, extracted relevant data and assessed their methodological quality. The Cochrane Collaboration's Revman 5.3 software was used for data analyses among the controlled studies. At last, one randomized controlled trial (RCT), two non-randomized control studies and five observational studies including a total of 579 cases were selected for this system review. The methodological quality of these studies was low to modern. The mean overall improvement of leg pain (visual analogue scale) was 66.92% (50.6%-89.87%), back pain (visual analogue scale) 54.91% (29%-67.95%), Oswestry Disability Index 60.9% (40.7%-75%), global perceived effect (MacNab/other) 75.77% (60%-95%). The mean overall of complication rate was 4.89% (0%-9.76%), dural tear rate 0.1% (0%-4.9%), recurrence rate 6.3% (4%-10%), re-operation rate 3.66% (2.33%-4.8%). We conducted a meta-analysis among the control trials. Compared with Open discectomy (OD), PELD resulted in better outcomes in terms of operative time, blood loss, lower complication rates, but with no significance differences regarding hospital stay, second recurrence rate, Macnab criteria and pain reduction. In conclusion, according to the current evidence, PELD is an effective procedure for the treatment of rLDH in terms of reducing complication and shorting hospital course, comparing with OD. Therefore, we suggested that PELD was a feasible alternative to OD in the treatment of the rLDH in the condition of proper indication. High-quality RCTs with large sample sizes are needed to further confirm these results.
Background: The leptin receptor-deficient knockout (db/db) mouse is a well-established model for studying type II diabetes mellitus (T2DM). T2DM is an important risk factor of intervertebral disc degeneration (IVDD). Although the relationship between type I diabetes and IVDD has been reported by many studies, few studies have reported the effects of T2DM on IVDD in db/db mice model. Methods: Mice were separated into 3 groups: wild-type (WT), db/db, and IGF-1 groups (leptin receptor-deficient mice were treated with insulin-like growth factor-1 (IGF-1). To observe the effects of T2DM and glucose-lowering treatment on IVDD, IGF-1 injection was used. The IVD phenotype was detected by H&E and safranin O fast green staining among db/db, WT and IGF-1 mice. The levels of blood glucose and weight in mice were also recorded. The changes in the mass of the trabecular bone in the fifth lumbar vertebra were documented by micro-computed tomography (micro-CT). Tunnel assays were used to detect cell apoptosis in each group. Results: The weight of the mice were 27.68 ± 1.6 g in WT group, which was less than 57.56 ± 4.8 g in db/db group, and 52.17 ± 3.7 g in IGF-1 injected group (P < 0.05). The blood glucose levels were also significantly higher in the db/db mice group. T2DM caused by leptin receptor knockout showed an association with significantly decreased vertebral bone mass and increased IVDD when compared to WT mice. The db/db mice induced by leptin deletion showed a higher percentage of MMP3 expression as well as cell apoptosis in IVDD mice than WT mice (P < 0.05), while IGF-1 treatment reversed this situation (P < 0.05). Conclusions: T2DM induced by leptin receptor knockout led to IVDD by increasing the levels of MMP3 and promoting cell apoptosis. IGF-1 treatment partially rescue the phenotype of IVDD induced by leptin receptor knockout.
Epidemiological studies have concluded that hyperlipidemia and atherosclerosis were related to intervertebral disc degeneration (IVDD). The presence of oxidized low density lipoprotein (ox-LDL) and the expression of lectin-like oxidized low density lipoprotein receptor 1 (LOX-1) have not been explored in this tissue. In this study, we investigated the presence of ox-LDL and the expression of its receptor LOX-1 in non-degenerated, degenerated or herniated human intervertebral discs (IVDs). The expression of LOX-1 and matrix metalloproteinase 3 (MMP3) were studied after incubating nucleus pulposus cells (NPCs) with ox-LDL. The presence of ox-LDL and LOX-1 was positively related with the extent of IVDD in nucleus pulposus (NP), end-plate cartilage and outer annulus fibrous, but not with the extent of degeneration of inter annulus fibrous. Ox-LDL significantly reduced the viability of human NPCs in a dose and time-dependent manner, and increased the expression of MMP3 induced by LOX-1. Pretreatment with anti-human LOX-1 monoclonal antibody reversed these effects. Ox-LDL, principally mediated by LOX-1, enhanced MMP3 production in NPCs through the NF-κB signaling pathway. In conclusion, increased accumulation of ox-LDL and LOX-1 in IVDs indicates a specific role of the receptor-ligand interaction in degeneration or herniation of IVDs.
Study Design: Retrospective cohort study. Objectives: The OF classification is a new classification for osteoporotic vertebral fractures. The aim of this study was to clarify the relationship between preoperative OF subgroups and the postoperative outcome after kyphoplasty in patients with such fractures. Methods: Patients who underwent kyphoplasty of a single osteoporotic vertebral fracture were included and divided into groups according to the OF subgroups. Pre- and postoperative plain radiographs were analyzed in regard to the restoration of vertebral body height and local kyphotic angle (LKA). Additionally, clinical data including pre- and postoperative Visual Analogue Scale pain scores was documented. The clinical and radiological results were compared pre- and postoperatively within groups and between groups. Results: A total of 156 patients from OF subgroups 2 to 4 were included (OF 2: n = 58; OF 3: n = 36; OF 4: n = 62). Patients from all groups experienced significant pain relief postoperatively ( P < .001). Patients with OF 2 fractures showed a repositioning of the vertebral body height in the anterior and middle portions (both P < .001), but no significant improvement in LKA. For OF 3 and 4 fractures, there was a significant restoration of vertebral body height ( P < .001 for both) and a significant improvement of LKA ( P < .001 for both). The highest average restoration was noted in the OF 4 group. Conclusions: A higher OF subgroup is related to a higher radiological benefit from kyphoplasty. This confirms that the OF classification is an appropriate tool for the preoperative assessment of osteoporotic fractures.
Introduction Spinopelvic mobility was identified as a contributing factor for total hip arthroplasty (THA) instability. The influence of spinopelvic function on acetabular cup positioning has not yet been sufficiently investigated in a prospective setting. Therefore, our study aimed (1) to assess cup inclination and anteversion in standing and sitting based on spinopelvic mobility, (2) to identify correlations between cup position and spinopelvic function, (3) and to determine the influence of the individual spinal segments, spinal sagittal balance, and spinopelvic characteristics on the mobility groups. Materials and methods A prospective study assessing 197 THA patients was conducted with stereoradiography in standing and sitting position postoperatively. Two independent investigators determined cup anteversion and inclination, C7-Sagittal vertical axis, cervical lordosis (CL), thoracic kyphosis (TK), lumbar lordosis (LL), sacral slope, pelvic tilt (PT), anteinclination (AI), and pelvic femoral angle (PFA). Spinopelvic mobility is defined based on ∆PT = PTstanding − PTsitting as ∆PT < 10° stiff, ∆PT ≥ 10–30° normal, and ∆PT > 30° hypermobile. Pearson coefficient represented correlations between the cup position and spinopelvic parameters. Results Significant differences were demonstrated for cup anteversion (stiff/hypermobile 29.3°/40.1°; p < 0.000) and inclination (stiff/hypermobile 43.5°/60.2°; p < 0.000) in sitting, but not in standing position. ∆ (standing/sitting) of the cup anteversion (stiff/neutral/hypermobile 5.8°/12.4°/19.9°; p < 0.000) and inclination (stiff/neutral/hypermobile 2.3°/11.2°/18.8°; p < 0.000) revealed significant differences between the mobility groups. The acetabular cup position in sitting, was correlated with lumbar flexibility (∆LL) and spinopelvic mobility. Significant differences were detected between the mobility types and acetabular orientation (AI sit:stiff/hypermobile 47.6°/65.4°; p < 0.000) and hip motion (∆PFA:stiff/hypermobile 65.8°/37.3°; p < 0.000). Assessment of the spinal segments highlighted the role of lumbar flexibility (∆LL:stiff/hypermobile 9.9°/36.2°; p < 0.000) in the spinopelvic complex. Conclusion The significantly different acetabular cup positions in sitting and in the ∆ between standing and sitting and the significantly altered spinopelvic characteristics in terms of stiff and hypermobile spinopelvic mobility underlined the consideration for preoperative functional radiological assessment. Identifying the patients with altered spinopelvic mechanics due to a standardized screening algorithm is necessary to provide safe acetabular cup positioning. The proximal spinal segments appeared not to be involved in the spinopelvic function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.