Inflammatory bowel disease (IBD), comprising Crohn’s disease (CD) and ulcerative colitis (UC), is characterized as a chronic and recurrent inflammatory disease whose pathogenesis is still elusive. The gut microbiota exerts important and diverse effects on host physiology through maintaining immune balance and generating health-benefiting metabolites. Many studies have demonstrated that IBD is associated with disturbances in the composition and function of the gut microbiota. Both the abundance and diversity of gut microbiota are dramatically decreased in IBD patients. Furthermore, some particular classes of microbiota-derived metabolites, principally short-chain fatty acids, tryptophan, and its metabolites, and bile acids have also been implicated in the pathogenesis of IBD. In this review, we aim to define the disturbance of gut microbiota and the key classes of microbiota-derived metabolites in IBD pathogenesis. In addition, we also focus on scientific evidence on probiotics, not only on the molecular mechanisms underlying the beneficial effects of probiotics on IBD but also the challenges it faces in safe and appropriate application.
Salvianolic acid A (Sal A) was considered to be the compound with highest activity in Salvia miltiorrhiza (danshen). Due to its low content in raw materials, many studies reported its preparation from salvianolic acid B (Sal B). However, the process of this transformation is still unknown. Our objective was to find the chemical change of the transformation from Sal B to Sal A. The results showed that Sal B was hydrolyzed to lithospermic acid (LA) first, and the latter was transformed into Sal A in thermal aqueous solution. The radical scavenging ability of Sal A, Sal B, and LA was tested through DPPH, and Sal A showed higher radical elimination ability compared to Sal B and LA. In vitro liver damage was induced by CCl4 in human hepatic WRL68 cell line. Sal A, Sal B, and LA showed liver protective ability in a dose-dependent manner, while Sal A possessed a much higher ability compared to Sal B and LA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.